Rickettsiae-like structures were found in the salivary gland cells of Drosophila auraria during different larval and prepupal developmental stages, from the early 3rd instar up to 14 hr after spiracle inversion. These microorganisms are surrounded by a membrane, are constantly intracellular, and occur singly or in groups. Their widespread occurrence in various tissues of other Drosophila species indicates that they can be considered as symbionts, but their actual functional significance (if any) is unknown.
Morphological alterations in the Golgi complex (GC) and changes in the distribution of acid phosphatase (AcPase), thiamine pyrophosphatase (TPPase), complex carbohydrates and reduced osmium tetroxide compounds in this organelle were studied in the salivary gland cells of Drosophila during larval and prepupal development. The morphology and the AcPase, TPPase and complex carbohydrates cytochemical patterns of the Golgi complex varied characteristically during cell differentiation. At the early 3rd instar period the Golgi complex consisted mainly of vesiculated cisternae, and AcPase activity was observed in all cisternae but not in the secretory granules. As development proceeded to the late 3rd instar the Golgi complex displayed its typical appearance, consisting of four to six cisternae, and only the two to three cisternae towards the trans-face as well as the trans-Golgi network and some of the immature secretory granules exhibited AcPase reactivity. In the course of a ‘wave’ of production of the ‘glue’ secretory granules proceeding proximally through the gland, the number of AcPase positive cisternae changed correspondingly. After secretion of the ‘glue’ secretory granules, the size of the Golgi complex decreased and almost all cisternae displayed AcPase reactivity. The detection of TPPase activity presented some specificity problems, since staining was observed not only in the GC cisternae but in the endoplasmic reticulum (ER) and microvilli. The reaction products were seen in a few GC vesicles during the early 3rd instar and in the trans side of the organelle at the end of the 3rd instar. During production of the secretory granules, every GC cisterna was intensely stained. These results agree with previous findings suggesting that AcPase and TPPase in secretory cells may be primarily involved in the processing of exportable proteins. The vicinal (vic)-glycol groups of the complex carbohydrates were detected using the periodic acid/thiocarbohydrazide/silver proteinate (PA-TCH-SP) technique. During synthesis of the ‘glue’ secretory granules, the reaction products were observed over the GC cisternae and the trans-Golgi network, with increasing intensity from the cis to the trans side of the organelle. No PA-TCH-SP staining was observed over the GC cisternae during the early 3rd instar. Following discharge of the ‘glue’ secretory granules, all GC cisternae displayed uniform PA-TCH-SP staining. After OsO4 impregnation, the reaction products were observed mainly in ER and mitochondria and rarely in the GC. In numerous cells, only the mitochondria were stained, while in many cases the ER of neighboring cells exhibited differential staining.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.