BackgroundRegardless of the growing interest in detecting population structures in malarial parasites, there have been limited discussions on how to use this concept in control programmes. In such context, the effects of the parasite population structures will depend on interventions’ spatial or temporal scales. This investigation explores the problem of identifying genetic markers, in this case microsatellites, to unveil Plasmodium genetic structures that could affect decisions in the context of elimination. The study was performed in a low-transmission area, which offers a good proxy to better understand problems associated with surveillance at the final stages of malaria elimination.MethodsPlasmodium vivax samples collected in Tumeremo, Venezuela, between March 2003 and November 2004 were analysed. Since Plasmodium falciparum also circulates in many low endemic areas, P. falciparum samples from the same locality and time period were included for comparison. Plasmodium vivax samples were assayed for an original set of 25 microsatellites and P. falciparum samples were assayed for 12 microsatellites.ResultsNot all microsatellite loci assayed offered reliable local data. A complex temporal-cluster dynamics is found in both P. vivax and P. falciparum. Such dynamics affect the numbers and the type of microsatellites required for identifying individual parasites or parasite clusters when performing cross-sectional studies. The minimum number of microsatellites required to differentiate circulating P. vivax clusters differs from the minimum number of hyper-variable microsatellites required to distinguish individuals within these clusters. Regardless the extended number of microsatellites used in P. vivax, it was not possible to separate all individual infections.ConclusionsMolecular surveillance has great potential; however, it requires preliminary local studies in order to properly interpret the emerging patterns in the context of elimination. Clonal expansions and clusters turnovers need to be taken into account when using molecular markers. Those affect the number and type of microsatellite markers, as well as, the expected genetic patterns in the context of operational investigations. By considering the local dynamics, elimination programmes could cost-effectively use molecular markers. However, population level studies need to consider the local limitations of a given set of loci in terms of providing epidemiologically relevant information.
Suspected artemisinin resistance in Plasmodium falciparum can be explored by examining polymorphisms in the Kelch (PfK13) propeller domain. Sequencing of PfK13 and other gene resistance markers was performed on 98 samples from Guyana. Five of these samples carried the C580Y allele in the PfK13 propeller domain, with flanking microsatellite profiles different from those observed in Southeast Asia. These molecular data demonstrate independent emergence of the C580Y K13 mutant allele in Guyana, where resistance alleles to previously used drugs are fixed. Therefore, in Guyana and neighboring countries, continued molecular surveillance and periodic assessment of the therapeutic efficacy of artemisinin-based combination therapy are warranted.
BackgroundRecent efforts in malaria control have resulted in great gains in reducing the burden of Plasmodium falciparum, but P. vivax has been more refractory. Its ability to form dormant liver stages confounds control and elimination efforts. To compare the efficacy and safety of primaquine regimens for radical cure, we undertook a randomized controlled trial in Ethiopia.Methods and findingsPatients with normal glucose-6-phosphate dehydrogenase status with symptomatic P. vivax mono-infection were enrolled and randomly assigned to receive either chloroquine (CQ) or artemether-lumefantrine (AL), alone or in combination with 14 d of semi-supervised primaquine (PQ) (3.5 mg/kg total). A total of 398 patients (n = 104 in the CQ arm, n = 100 in the AL arm, n = 102 in the CQ+PQ arm, and n = 92 in the AL+PQ arm) were followed for 1 y, and recurrent episodes were treated with the same treatment allocated at enrolment. The primary endpoints were the risk of P. vivax recurrence at day 28 and at day 42.The risk of recurrent P. vivax infection at day 28 was 4.0% (95% CI 1.5%–10.4%) after CQ treatment and 0% (95% CI 0%–4.0%) after CQ+PQ. The corresponding risks were 12.0% (95% CI 6.8%–20.6%) following AL alone and 2.3% (95% CI 0.6%–9.0%) following AL+PQ. On day 42, the risk was 18.7% (95% CI 12.2%–28.0%) after CQ, 1.2% (95% CI 0.2%–8.0%) after CQ+PQ, 29.9% (95% CI 21.6%–40.5%) after AL, and 5.9% (95% CI 2.4%–13.5%) after AL+PQ (overall p < 0.001). In those not prescribed PQ, the risk of recurrence by day 42 appeared greater following AL treatment than CQ treatment (HR = 1.8 [95% CI 1.0–3.2]; p = 0.059). At the end of follow-up, the incidence rate of P. vivax was 2.2 episodes/person-year for patients treated with CQ compared to 0.4 for patients treated with CQ+PQ (rate ratio: 5.1 [95% CI 2.9–9.1]; p < 0.001) and 2.3 episodes/person-year for AL compared to 0.5 for AL+PQ (rate ratio: 6.4 [95% CI 3.6–11.3]; p < 0.001). There was no difference in the occurrence of adverse events between treatment arms.The main limitations of the study were the early termination of the trial and the omission of haemoglobin measurement after day 42, resulting in an inability to estimate the cumulative risk of anaemia.ConclusionsDespite evidence of CQ-resistant P. vivax, the risk of recurrence in this study was greater following treatment with AL unless it was combined with a supervised course of PQ. PQ combined with either CQ or AL was well tolerated and reduced recurrence of vivax malaria by 5-fold at 1 y.Trial registrationClinicalTrials.gov NCT01680406
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.