Local ecological communities represent the scale at which species coexist and share resources, and at which diversity has been experimentally shown to underlie stability, productivity, invasion resistance, and other desirable community properties. Globally, community diversity shows a mixture of increases and decreases over recent decades, and these changes have relatively seldom been linked to climatic trends. In a heterogeneous California grassland, we documented declining plant diversity from 2000 to 2014 at both the local community (5 m 2 ) and landscape (27 km 2 ) scales, across multiple functional groups and soil environments. Communities became particularly poorer in native annual forbs, which are present as small seedlings in midwinter; within native annual forbs, community composition changed toward lower representation of species with a trait indicating drought intolerance (high specific leaf area). Time series models linked diversity decline to the significant decrease in midwinter precipitation. Livestock grazing history, fire, succession, N deposition, and increases in exotic species could be ruled out as contributing causes. This finding is among the first demonstrations to our knowledge of climate-driven directional loss of species diversity in ecological communities in a natural (nonexperimental) setting. Such diversity losses, which may also foreshadow larger-scale extinctions, may be especially likely in semiarid regions that are undergoing climatic trends toward higher aridity and lower productivity.L arge-scale elevational and latitudinal range shifts, altered seasonal timing, and disrupted interactions among interdependent species are well-known consequences of recent global warming, all of which are predicted to intensify in coming decades and to be accompanied by increasing rates of global extinction (1-4). Consequences of rapid climate change for the diversity of local ecological communities are far less clear; diversity might increase or decrease at any given location, depending on the particular nature of climatic changes and the potential for dispersal (5-8).
Th e metacommunity concept, describing how local and regional scale processes interact to structure communities, has been successfully applied to patterns of taxonomic diversity. Functional diversity has proved useful for understanding local scale processes, but has less often been applied to understanding regional scale processes. Here, we explore functional diversity patterns within a metacommunity context to help elucidate how local and regional scale processes infl uence community assembly. We detail how each of the four metacommunity perspectives (species sorting, mass eff ects, patch dynamics, neutral) predict diff erent patterns of functional beta-and alpha-diversity and spatial structure along two key gradients: dispersal limitation and environmental conditions. We then apply this conceptual model to a case study from alpine tundra plant communities. We sampled species composition in 17 ' sky islands ' of alpine tundra in the Colorado Rocky Mountains, USA that diff ered in geographic isolation and area (key factors related to dispersal limitation) and temperature and elevation (key environmental factors). We quantifi ed functional diversity in each site based on specifi c leaf area, leaf area, stomatal conductance, plant height and chlorophyll content. We found that colder high elevation sites were functionally more similar to each other (decreased functional beta-diversity) and had lower functional alphadiversity. Geographic isolation and area did not infl uence functional beta-or alpha-diversity. Th ese results suggest a strong role for environmental conditions structuring alpine plant communities, patterns consistent with the species sorting metacommunity perspective. Incorporating functional diversity into metacommunity theory can help elucidate how local and regional factors structure communities and provide a framework for observationally examining the role of metacommunity dynamics in systems where experimental approaches are less tractable.
Climate change presents new challenges for selecting species for restoration. If migration fails to keep pace with climate change, as models predict, the most suitable sources for restoration may not occur locally at all. To address this issue, we propose a strategy of “prestoration”: utilizing species in restoration for which a site represents suitable habitat now and into the future. Using the Colorado Plateau, United States, as a case study, we assess the ability of grass species currently used regionally in restoration to persist into the future using projections of ecological niche models (or climate envelope models) across a suite of climate change scenarios. We then present a technique for identifying new species that best compensate for future losses of suitable habitat by current target species. We found that the current suite of species, selected by a group of experts, is predicted to perform reasonably well in the short term, but that losses of prestorable habitat by mid‐century would approach 40%. Using an algorithm to identify additional species, we found that fewer than 10 species could compensate for nearly all of the losses incurred by the current target species. This case study highlights the utility of integrating ecological niche modeling and future climate forecasts to predict the utility of species in restoring under climate change across a wide range of spatial and temporal scales.
Abstract. Understanding the consequences of extreme climatic events is a growing challenge in ecology. Climatic extremes may differentially affect varying elements of biodiversity, and may not always produce ecological effects exceeding those of "normal" climatic variation in space and time. We asked how the extreme drought years of 2013-2014 affected the cover, species richness, functional trait means, functional diversity, and phylogenetic diversity of herbaceous plant communities across the California Floristic Province. We compared the directions and magnitudes of these drought effects with expectations from four "pre-drought" studies of variation in water availability: (1) a watering experiment, (2) a long-term (15-yr) monitoring of interannual variability, (3) a resampling of historic (57-yr-old) plots within a warming and drying region, and (4) natural variation in communities over a broad geographic gradient in precipitation. We found that the drought was associated with consistent reductions in species richness and cover, especially for annual forbs and exotic annual grasses, but not with changes in functional or phylogenetic diversity. Except for total cover and cover of exotic annual grasses, most drought effects did not exceed quantitative expectations based on the four pre-drought studies. Qualitatively, plant community responses to the drought were most concordant with responses to pre-drought interannual rainfall variability in the 15-yr monitoring study, and least concordant with responses to the geographic gradient in precipitation. Our results suggest that, at least in the short term, extreme drought may cause only a subset of community metrics to respond in ways that exceed normal background variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.