Reduced sleep duration and sleep deprivation have been associated with cognitive impairment as well as decreased white matter integrity as reported by experimental studies. However, it is largely unknown whether differences in sleep duration and sleep quality might affect microstructural white matter and cognition. Therefore, the present study aims to examine the cross‐sectional relationship between sleep duration, sleep quality, and cognitive performance in a naturalistic study design, by focusing on the association with white matter integrity in a large sample of healthy, young adults. To address this, 1,065 participants, taken from the publicly available sample of the Human Connectome Project, underwent diffusion tensor imaging. Moreover, broad cognitive performance measures (NIH Cognition Toolbox) and sleep duration and quality (Pittsburgh Sleep Quality Index) were assessed. The results revealed a significant positive association between sleep duration and overall cognitive performance. Shorter sleep duration significantly correlated with fractional anisotropy (FA) reductions in the left superior longitudinal fasciculus (SLF). In turn, FA in this tract was related to measures of cognitive performance and was shown to significantly mediate the association of sleep duration and cognition. For cognition only, associations shift to a negative association of sleep duration and cognition for participants sleeping more than 8 hr a day. Investigations into subjective sleep quality showed no such associations. The present study showed that real‐world differences in sleep duration, but not subjective sleep quality are related to cognitive performance measures and white matter integrity in the SLF in healthy, young adults.
We aimed to extend our knowledge on the relationship between physical fitness (PF) and both white matter microstructure and cognition through in-depth investigation of various cognitive domains while accounting for potentially relevant nuisance covariates in a well-powered sample. To this end, associations between walking endurance, diffusion-tensor-imaging (DTI) based measures of fractional anisotropy (FA) within brain white matter and cognitive measures included in the NIH Toolbox Cognition Battery were investigated in a sample of n = 1206 healthy, young adults (mean age = 28.8; 45.5% male) as part of the human connectome project. Higher levels of endurance were associated with widespread higher FA (pFWE < 0.05) as well as with enhanced global cognitive function (p < 0.001). Significant positive relationships between endurance and cognitive performance were similarly found for almost all cognitive domains. Higher FA was significantly associated with enhanced global cognitive function (p < 0.001) and FA was shown to significantly mediate the association between walking endurance and cognitive performance. Inclusion of potentially relevant nuisance covariates including gender, age, education, BMI, HBA1c, and arterial blood pressure did not change the overall pattern of results. These findings support the notion of a beneficial and potentially protective effect of PF on brain structure and cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.