Within the European iMERA-Plus project 'Traceable Characterisation of Nanoparticles' various particle measurement procedures were developed and finally a measurement comparison for particle size was carried out among seven laboratories across six national metrology institutes. Seven high quality particle samples made from three different materials and having nominal sizes in the range from 10 to 200 nm were used. The participants applied five fundamentally different measurement methods, atomic force microscopy, dynamic light scattering (DLS), small-angle x-ray scattering, scanning electron microscopy and scanning electron microscopy in transmission mode, and provided a total of 48 independent, traceable results. The comparison reference values were determined as weighted means based on the estimated measurement uncertainties of the participants. The comparison reference values have combined standard uncertainties smaller than 1.4 nm for particles with sizes up to 100 nm. All methods, except DLS, provided consistent results.
Nitrate isotope data interpreted in combination with hydrological and chemical data provide valuable information on the nitrate pollution sources and on the processes nitrate has undergone during its retention and transport in the watershed. This information is useful for the development of an appropriate water management policy.
CCQM-K125 was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of trace elements (K, Cu and I) in infant formula. Government Laboratory, Hong Kong SAR (GLHK) acted as the coordinating laboratory.
In CCQM-K125, 25 institutes submitted the results for potassium, 24 institutes submitted the results for copper and 8 institutes submitted the results for iodine.
For examination of potassium and copper, most of the participants used microwave-assisted acid digestion methods for sample dissolution. A variety of instrumental techniques including inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), atomic absorption spectrometry (AAS), flame atomic emission spectrometry (FAES) and microwave plasma atomic emission spectroscopy (MP-AES) were employed by the participants for determination. For analysis of iodine, most of the participants used alkaline extraction methods for sample preparation. ICP-MS and ID-ICP-MS were used by the participants for the determination.
Generally, the participants' results of CCQM-K125 were found consistent for all measurands according to their equivalence statements. Except with some extreme values, most of the participants obtained the values of di
/U(di
) within ± 1 for the measurands.
Main text
To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.
The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.