Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.
Atlantic salmon (Salmo salar) is one of the most extensively studied fish species in the world due to its significance in aquaculture, fisheries and ongoing conservation efforts to protect declining populations. Yet, limited genomic resources have hampered our understanding of genetic architecture in the species and the genetic basis of adaptation to the wide range of natural and artificial environments it occupies. In this study, we describe the development of a medium-density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing. The array was used in the most extensive assessment of population genetic structure performed to date in this species. A total of 6176 informative SNPs were successfully genotyped in 38 anadromous and freshwater wild populations distributed across the species natural range. Principal component analysis clearly differentiated European and North American populations, and within Europe, three major regional genetic groups were identified for the first time in a single analysis. We assessed the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups. In Europe, secondary contact zones were identified between major clusters where endogenous and exogenous barriers could be associated, rendering the interpretation of environmental influence on potentially adaptive divergence equivocal. A small number of markers highly divergent in allele frequencies (outliers) were observed between (multiple) freshwater and anadromous populations, between northern and southern latitudes, and when comparing Baltic populations to all others. We also discuss the potential future applications of the SNP array for conservation, management and aquaculture.
Farmed Atlantic salmon (Salmo salar) escape from net pens and enter rivers to spawn, potentially resulting in genetic introgression and reduced fitness of wild salmon. Here, we quantify genetic introgression of farmed to wild salmon, using molecular genetic markers, in populations from 147 salmon rivers, representing three-quarters of the total wild salmon spawning population in Norway. For 109 rivers with adult modern samples and sample sizes of 20 or more, the average level of farmed genetic introgression was 6.4% (median = 2.3%), with a range between 0.0% and 42.2%. Fifty-one of these rivers showed significant farmed genetic introgression when compared with historical reference samples. We observed a highly significant correlation between estimated farmed introgression and average proportion of escaped farmed salmon. We quantify levels of introgression as unweighted averages or weighted by population sizes, to compare geographical regions and to compare levels of introgression in rivers and fjords designated as locations deserving a high level of protection. We found a generally lower level of introgression in National Salmon Rivers and National Salmon Fjords subjected to formal protection by parliament. We conclude that farmed to wild genetic introgression is high in a large proportion of Norwegian salmon rivers, with the highest levels found in the most intensive areas of salmon farming. The extensive genetic introgression documented here poses a serious challenge to the management of farmed and wild Atlantic salmon in Norway and, in all likelihood, in other regions where farmed-salmon escape events occur with regularity
Genetic interactions between farmed and wild conspecifics are of special concern in fisheries where large numbers of domesticated individuals are released into the wild. In the Atlantic salmon (Salmo salar), selective breeding since the 1970's has resulted in rapid genetic changes in commercially important traits, such as a doubling of the growth rate. Each year, farmed salmon escape from net pens, enter rivers, and interbreed with wild salmon. Field experiments demonstrate that genetic introgression may weaken the viability of recipient populations. However, due to the lack of diagnostic genetic markers, little is known about actual rates of gene flow from farmed to wild populations. Here we present a panel of 60 single nucleotide polymorphisms (SNPs) that collectively are diagnostic in identifying individual salmon as being farmed or wild, regardless of their populations of origin. These were sourced from a pool of 7000 SNPs comparing historical wild and farmed salmon populations, and were distributed on all but two of the 29 chromosomes. We suggest that the generic differences between farmed and wild salmon at these SNPs have arisen due to domestication. The identified panel of SNPs will permit quantification of gene flow from farmed to wild salmon populations, elucidating one of the most controversial potential impacts of aquaculture. With increasing global interest in aquaculture and increasing pressure on wild populations, results from our study have implications for a wide range of species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.