To live or to die? This crucial question eloquently reflects the dual role of Ca2+ in living organisms--survival factor or ruthless killer. It has long been known that Ca2+ signals govern a host of vital cell functions and so are necessary for cell survival. However, more recently it has become clear that cellular Ca2+ overload, or perturbation of intracellular Ca2+ compartmentalization, can cause cytotoxicity and trigger either apoptotic or necrotic cell death.
In addition to the well-established role of the mitochondria in energy metabolism, regulation of cell death has recently emerged as a second major function of these organelles. This, in turn, seems to be intimately linked to their role as the major intracellular source of reactive oxygen species (ROS), which are mainly generated at Complex I and III of the respiratory chain. Excessive ROS production can lead to oxidation of macromolecules and has been implicated in mtDNA mutations, ageing, and cell death. Mitochondriagenerated ROS play an important role in the release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and apoptosis. Cytochrome c release occurs by a two-step process that is initiated by the dissociation of the hemoprotein from its binding to cardiolipin, which anchors it to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and results in an increased level of "free" cytochrome c in the intermembrane space. Conversely, mitochondrial antioxidant enzymes protect from apoptosis. Hence, there is accumulating evidence supporting a direct link between mitochondria, oxidative stress and cell death.
During ischemic brain injury, glutamate accumulation leads to overstimulation of postsynaptic glutamate receptors with intracellular Ca2+ overload and neuronal cell death. Here we show that glutamate can induce either early necrosis or delayed apoptosis in cultures of cerebellar granule cells. During and shortly after exposure to glutamate, a subpopulation of neurons died by necrosis. In these cells, mitochondrial membrane potential collapsed, nuclei swelled, and intracellular debris were scattered in the incubation medium. Neurons surviving the early necrotic phase recovered mitochondrial potential and energy levels. Later, they underwent apoptosis, as shown by the formation of apoptotic nuclei and by chromatin degradation into high and low molecular weight fragments. These results suggest that mitochondrial function is a critical factor that determines the mode of neuronal death in excitotoxicity.
In addition to the established role of the mitochondria in energy metabolism, regulation of cell death has emerged as a second major function of these organelles. This seems to be intimately linked to their generation of reactive oxygen species (ROS), which have been implicated in mtDNA mutations, aging, and cell death. Mitochondrial regulation of apoptosis occurs by mechanisms, which have been conserved through evolution. Thus, many lethal agents target the mitochondria and cause release of cytochrome c and other pro-apoptotic proteins into the cytoplasm. Cytochrome c release is initiated by the dissociation of the hemoprotein from its binding to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and increases the level of soluble cytochrome c in the intermembrane space. Subsequent release of the hemoprotein occurs by pore formation mediated by pro-apoptotic Bcl-2 family proteins, or by Ca(2+) and ROS-triggered mitochondrial permeability transition, although the latter pathway might be more closely associated with necrosis. Taken together, these findings have placed the mitochondria in the focus of current cell death research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.