We propose a unified approach to nonlinear modal analysis in dissipative oscillatory systems. This approach eliminates conflicting definitions, covers both autonomous and time-dependent systems, and provides exact mathematical existence, uniqueness and robustness results. In this setting, a nonlinear normal mode (NNM) is a set filled with small-amplitude recurrent motions: a fixed point, a periodic orbit or the closure of a quasiperiodic orbit. In contrast, a spectral submanifold (SSM) is an invariant manifold asymptotic to a NNM, serving as the smoothest nonlinear continuation of a spectral subspace of the linearized system along the NNM. The existence and uniqueness of SSMs turns out to depend on a spectral quotient computed from the real part of the spectrum of the linearized system. This quotient may well be large even for small dissipation, thus the inclusion of damping is essential for firm conclusions about NNMs, SSMs and the reduced-order models they yield.3 Linear spectral geometry: Eigenspaces, normal modes, spectral subspaces, and invariant manifolds
EigenvaluesThe linear, unperturbed part of system (5) isẋ = Ax.
We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower-and higher-dimensional mechanical systems.
We derive conditions under which a general nonlinear mechanical system can be exactly reduced to a lower-dimensional model that involves only the most flexible degrees of freedom. This Slow-Fast Decomposition (SFD) enslaves exponentially fast the stiff degrees of freedom to the flexible ones as all oscillations converge to the reduced model defined on a slow manifold. We obtain an expression for the domain boundary beyond which the reduced model ceases to be relevant due to a generic loss of stability of the slow manifold. We also find that near equilibria, the SFD gives a mathematical justification for two modal-reduction methods used in structural dynamics: static condensation and modal derivatives. These formal reduction procedures, however, are also found to return incorrect results when the SFD conditions do not hold. We illustrate all these results on mechanical examples.
We show how spectral submanifold theory can be used to provide analytic predictions for the response of periodically forced multi-degree-of-freedom mechanical systems. These predictions include an explicit criterion for the existence of isolated forced responses that will generally be missed by numerical continuation techniques. Our analytic predictions can be refined to arbitrary precision via an algorithm that does not require the numerical solutions of the mechanical system. We illustrate all these results on low-and high-dimensional nonlinear vibration problems. We find that our SSM-based forced-response predictions remain accurate in high-dimensional systems, in which numerical continuation of the periodic response is no longer feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.