All possible spin–spin coupling constants, 19F–19F, 19F–13C, and 19F–1H, of pentafluorobenzene were calculated at five different levels of theory, HF, DFT, SOPPA (CCSD), CCSD, and the SOPPA (CCSD)‐based composite scheme with taking into account solvent, vibrational, relativistic, and correlation corrections. Most corrections were next to negligible for the long‐range couplings but quite essential for the one‐bond carbon–fluorine coupling constants. Hartree–Fock calculations were found to be entirely unreliable, while DFT results were comparable in accuracy with the data obtained using the wave function‐based methods.
The 19F NMR chemical shifts of 13 trifluoromethyl derivatives of alkenes, pyrimidines, and indenes were calculated at the DFT level using the BhandHLYP, BHandH, PBE, PBE0, O3LYP, B3LYP, KT2, and KT3 functionals in combination with the pcS‐2 basis set. Best result was documented for the BHandHLYP functional: The mean absolute error (MAE) of 0.66 ppm for the scaled values was achieved for the range of about 20 ppm. Solvent, vibrational, and relativistic corrections were found to be rather small, especially when taken in combination, generally demonstrating a slight decrease in the difference between calculated and experimental fluorine chemical shifts. As a measure of the practical importance of these compounds, one should recall that the growing number of life science products that contain trifluoromethyl groups provides a continuing driving force for the development of an effective methodology that enables both regio‐ and stereoselective introduction of trifluoromethyl groups into both aliphatic and aromatic systems.
The substituent α‐, β‐, and γ‐effects of the elements of the second and third periods on 19F NMR chemical shifts are evaluated including the establishment of stereochemical dependence of γ‐effect, the latter particularly important in stereochemical studies of fluorine‐containing compounds. Benchmark calculations performed for a series of 32 simple inorganic fluorine‐containing molecules demonstrated a markedly good correlation between calculated and experimental fluorine chemical shifts characterized by a mean absolute error of 22.5 ppm in the range of about 900 ppm, which corresponds to a 2.5% error in the percentage terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.