We studied compositional variations in columbite group minerals (CGM) from several granitic pegmatites of the beryl-columbite subtype in the Maršíkov district, Silesian Domain of the Bohemian Massif, Czech Republic. The CGM are characterized by distinct zoned patterns in BSE images. Primary magmatic homogeneous to oscillatory zoning is preserved in corroded crystal cores, whereas the majority of the crystal volume is replaced by secondary complexly zoned domains formed via post-magmatic processes. The primary domains show relatively uniform evolutionary trends from core to rim, generally with steeply increasing Ta/(Ta + Nb) and negligible to slightly increasing Mn/(Mn + Fe). In contrast, the compositions of secondary CGM domains indicate a reversed evolution, with: (1) steeply decreasing Ta/(Ta + Nb) and relatively constant Mn/(Mn + Fe) characteristics for CGM in the Bienergraben and Scheibengraben pegmatites, and (2) insignificantly decreasing Ta/(Ta + Nb) and strongly decreasing Mn/(Mn + Fe) characteristics for CGM in the Schinderhübel I and Lysá Hora pegmatites. Patchy zoning and secondary evolution in CGM result from metasomatic replacement processes related to fluids. These fluids are probably late-magmatic and exsolved from the residual melt and in later stages locally mixed with external Mg-enriched fluids derived from the host rocks. The presence of volatiles (mainly H2O, F) facilitated high mobility of the elements and replacement of the early CGM. Textural characteristics and compositional variations in CGM show the complex evolution of the pegmatite system from the magmatic stage to subsolidus-hydrothermal conditions.
The simply zoned Šejby pegmatite of beryl-columbite subtype is enclosed in migmatitized gneisses-country rocks of the southern part of the Central Moldanubian Plutonic Complex, Bohemian Massif, Czech Republic. The columbite-group minerals (CGM) occur mostly in blocky K-feldspar unit. Primary magmatic CGM [columbite-(Fe)−tantalite-(Fe)], show an interesting compositional and textural evolution. Subhomogeneous cores of columbite-(Fe)−tantalite-(Fe) (A) are surrounded by heterogeneous intermediate zones (B) and (C) with irregular to oscillatory zoning and mutually comparable compositions. Zone (B) contains grains of tapiolite-(Fe) and inclusions of pyrite decomposed into a mixture of secondary jarosite-group minerals. In the next zone (C), irregular Mn-enriched patches occur and in the outermost thin zone (D) CGM exhibit fine oscillatory zoning typically developed at crystal terminations. The late, subsolidus CGM include patchy-zoned Mn-enriched columbite-(Fe) and late columbite-(Fe) veinlets both formed at the expense of their magmatic precursors in the zone C; the veinlets are also present in the zone D. Similar but fine patches and veinlets are developed around jarosite pseudomorphs after pyrite. The compositional evolution of CGM shows a slight increase in Ta/ Nb and Mn/Fe in the zones A and B followed by a reverse trend to elevated Nb and Fe in the zone C and, in particular, in the zone D. Complex subsolidus fluid-melt interactions that generated patches and veinlets caused only minor changes in Ta/Nb and slight Mn-enrichment. Tantalum depletion in veins close to jarosite pseudomorphs after pyrite indicates higher mobility of Ta in acidic low-temperature fluids.
Microlite-group minerals occur as common replacement products after primary and secondary columbite-group minerals (CGM) in albitised blocky K-feldspar and in coarse-grained, muscovite-rich units of the Schinderhübel I, Scheibengraben and Bienergraben beryl–columbite pegmatites in the Maršíkov District (Silesian Unit, Bohemian Massif, Czech Republic). Textural and compositional variations of microlite-group minerals were examined using electron probe micro-analyses and microRaman spectroscopy (μRS). A complex post-magmatic evolution of the pegmatites and the following microlite populations (Mic) and related processes were found: (1) precipitation of U, Na-rich and F-poor Mic I on cracks in CGM; (2) alteration of Mic I to U-rich together with Na- and F-poor Mic II; and (3) partial replacement of Mic I and II by Mic III with a distinct Na, U and Ti loss and Ca and F gain. Stage (2) includes an extensive leaching of Na, without U loss. The final stage (3) produced euhedral-to-subhedral oscillatory zoned Ca and F enriched Mic III with distinctly different composition to the previous F-poor and A-site vacant Mic II. Aggregates of fersmite are associated commonly with Mic III. Distal Mic IIId occurs locally on cracks in K-feldspar or quartz, with compositions analogous to Mic III. Compositional variations and textural features of microlite-group minerals during dissolution–reprecipitation processes serve as sensitive tracers of post-magmatic evolution in granitic pegmatites recording complex interactions between magmatic pegmatite units and externally derived, hydrothermal metamorphic fluids.
Bohseite was found in a lenticular body of D6e beryl-columbite granitic pegmatite near Maršíkov, which is hosted by amphibole gneisses of the Sobotín Amphibolite Massif (Silesicum, northeastern part of Czech Republic). Bohseite forms chalky white aggregates up to 1 cm in size, which are hosted by small vugs in the coarse-grained pegmatite. It is associated with small crystals of quartz, adularia, albite, muscovite and epidote. Bohseite is orthorhombic, space group Cmcm with following unit-cell parameters refined from X-ray powder diffraction data: a 23.210(2), b 4.955(2), c 19.428(3) Å and V 2234.5(1.0) Å3. The electron microprobe compositional data of bohseite are presented. Bohseite from Maršíkov contains 14.3 - 42.5 mol. % of bavenite component, up to 0.06 apfu Na and 0.13 - 0.36 apfu F. The association with other beryllium-rich phases (milarite, bertrandite) points to variable activities of Be and Al during hydrothermal stage of evolution of the pegmatite body. The likely source of Be was beryl, which is sometimes completely dissolved and vugs after its crystals are lined by small crystals of above mentioned hydrothermal phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.