There is ample evidence of the role of land use and transportation interactions in determining urban spatial structure. The increased digitization of human activity produces a wealth of new data that can support longitudinal studies of changes in land-value distributions and integrated urban microsimulation models. To produce a comprehensive dataset, information from various sources needs to be merged at the land-parcel level to enhance datasets with additional attributes, while maintaining the ease of data storage and retrieval and respecting spatial and temporal relationships. This paper proposes a prototype of a workflow to augment a historical dataset of real estate transactions with data from multiple urban sources and to use machine learning to classify land use of each record based on housing market dynamics. The study finds that engineered parcel-level attributes, capturing housing market dynamics, have stronger predictive power than aggregated socio-economic variables, for classifying property land use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.