The history of permafrost landscape map compilation is related to the study of ecological problems with permafrost. Permafrost-landscape studies are now widely used in geocryological mapping. Permafrost-landscape classifications and mapping are necessary for studying the trends in development of the natural environment in northern and high-altitude permafrost regions. The cryogenic factor in the permafrost zone plays a leading role in the differentiation of landscapes, so it must be considered during classification construction. In this study, a map's special content was developed using publications about Yakutian nature, archive sources from academic institutes, the interpretation of satellite images, and special field studies. Overlays of 20 types of terrain, identified by geological and geomorphological features, and 36 types of plant groupings, allowed the systematization of permafrost temperature and active layer thickness in 145 landscape units with relatively homogeneous permafrost-landscape conditions in the Sakha (Yakutia) Republic. This map serves as a basis for applied thematic maps related to the assessment and forecast of permafrost changes during climate warming and anthropogenic impacts.
This paper presents the results of 39 years of observations conducted at the Chabyda station to monitor the thermal state of permafrost landscapes under current climatic warming. The analysis of long-term records from weather stations in the region has revealed one of the highest increasing trends in mean annual air temperature in northern Russia. The partitioning of the energy balance in different landscape units within the study area has been analyzed. Quantitative relationships in the long-term variability of ground thermal parameters, such as the ground temperature at the bottom of the active layer and seasonal thaw depth, have been established. The ground temperature dynamics within the depth of zero annual amplitude indicates that both warm and cold permafrost are thermally stable. The short-term variability of the snow accumulation regime is the main factor controlling the thermal state of the ground in permafrost landscapes. The depth of seasonal thaw is characterized by low interannual variability and exhibits little response to climate warming, with no statistically significant increasing or decreasing trend. The results of the ground thermal monitoring can be extended to similar landscapes in the region, providing a reliable basis for predicting heat transfer in natural, undisturbed landscapes.
The relevance of the problem under review is explained by the need to study the thermal response of permafrost to the modern climate change. Evolution of the thermal state of grounds has been studied with a view to evaluate the effects of modern climate warming on permafrost in Central Yakutia. The leading method to study this problem is the arrangement and performance of long-term monitoring observations of the permafrost thermal state that enable quantitative evaluation of the thermal response of upper permafrost layers to climatic fluctuations of recent decades. The analysis of long-term records from weather stations in the region has clearly revealed one of the highest increasing trends in the mean annual air temperature in northern Russia. Quantitative relationships in the long-term variability of ground thermal parameters, such as ground temperature at the bottom of the active layer, at the bottom of the annual heat exchange layer, and active thaw depth, have been established. The thermal state dynamics of the annual heat exchange layer under climate warming indicates that both warm and cold permafrost are thermally stable. Short-term variability of the snow accumulation regime is the main factor controlling the thermal state of the ground in permafrost landscapes. The active-layer thickness is characterized by low interannual variability and exhibits little response to climate warming, with no statistically meaningful increasing or decreasing trend. The results of ground thermal monitoring can be extended to similar landscapes in the region, providing a reliable basis for predicting heat transfer in natural landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.