The Colour and Stereo Surface Imaging System (CaSSIS) is the main imaging system onboard the European Space Agency’s ExoMars Trace Gas Orbiter (TGO) which was launched on 14 March 2016. CaSSIS is intended to acquire moderately high resolution (4.6 m/pixel) targeted images of Mars at a rate of 10–20 images per day from a roughly\ud circular orbit 400 km above the surface. Each image can be acquired in up to four colours and stereo capability is foreseen by the use of a novel rotation mechanism. A typical product from one image acquisition will be a 9.5 km×∼45 km swath in full colour and stereo in one over-flight of the target thereby reducing atmospheric influences inherent in stereo and colour products from previous high resolution imagers. This paper describes the instrument including several novel technical solutions required to achieve the scientific requirement
indicates equal contribution Time Lens, a novel method that leverages the advantages of both. We extensively evaluate our method on three synthetic and two real benchmarks where we show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods. Finally, we release a new large-scale dataset in highly dynamic scenarios, aimed at pushing the limits of existing methods.
Today, a frame-based camera is the sensor of choice for machine vision applications. However, these cameras, originally developed for acquisition of static images rather than for sensing of dynamic uncontrolled visual environments, suffer from high power consumption, data rate, latency and low dynamic range. An event-based image sensor addresses these drawbacks by mimicking a biological retina. Instead of measuring the intensity of every pixel in a fixed time interval, it reports events of significant pixel intensity changes. Every such event is represented by its position, sign of change, and timestamp, accurate to the microsecond. Asynchronous event sequences require special handling, since traditional algorithms work only with synchronous, spatially gridded data. To address this problem we introduce a new module for event sequence embedding, for use in different applications. The module builds a representation of an event sequence by firstly aggregating information locally across time, using a novel fully-connected layer for an irregularly sampled continuous domain, and then across discrete spatial domain. Based on this module, we design a deep learning-based stereo method for eventbased cameras. The proposed method is the first learningbased stereo method for an event-based camera and the only method that produces dense results. We show large performance increases on the Multi Vehicle Stereo Event Camera Dataset (MVSEC), which became the standard set for the benchmarking of event-based stereo methods.
Recently, video frame interpolation using a combination of frame-and event-based cameras has surpassed traditional image-based methods both in terms of performance and memory efficiency. However, current methods still suffer from (i) brittle image-level fusion of complementary interpolation results, that fails in the presence of artifacts in the fused image, (ii) potentially temporally inconsistent and inefficient motion estimation procedures, that run for every inserted frame and (iii) low contrast regions that do not trigger events, and thus cause events-only motion estimation to generate artifacts. Moreover, previous methods were only tested on datasets consisting of planar and faraway scenes, which do not capture the full complexity of the real world. In this work, we address the above problems by introducing multi-scale feature-level fusion and computing one-shot non-linear inter-frame motion-which can be efficiently sampled for image warping-from events and images. We also collect the first large-scale events and frames dataset consisting of more than 100 challenging scenes with depth variations, captured with a new experimental setup based on a beamsplitter. We show that our method improves the reconstruction quality by up to 0.2 dB in terms of PSNR and up to 15% in LPIPS score. Multimedia MaterialFor videos, datasets and more visit https://uzhrpg.github.io/timelens-pp/ .
Deep-learning metrics have recently demonstrated extremely good performance to match image patches for stereo reconstruction. However, training such metrics requires large amount of labeled stereo images, which can be difficult or costly to collect for certain applications.The main contribution of our work is a new semisupervised method for learning deep metrics from unlabeled stereo images, given coarse information about the scenes and the optical system. Our method alternatively optimizes the metric with a standard stochastic gradient descent, and applies stereo constraints to regularize its prediction.Experiments on reference data-sets show that, for a given network architecture, training with this new method without ground-truth produces a metric with performance as good as state-of-the-art baselines trained with the said ground-truth.This work has three practical implications. Firstly, it helps to overcome limitations of training sets, in particular noisy ground truth. Secondly it allows to use much more training data during learning. Thirdly, it allows to tune deep metric for a particular stereo system, even if ground truth is not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.