This preliminary study suggests that robot-guided drilling of a minimally invasive approach to the cochlea might be feasible, but further improvements are necessary before any clinical application becomes possible. Where the width of the facial recess is less than 2.5 mm, the chorda tympani nerve and the ossicles are at risk.
To the best of our knowledge, this is the first time that a robot has been used to perform a mastoidectomy. Although significant hurdles remain to translate this technology to clinical use, we have shown that it is feasible. The prospect of reducing surgical time and enhancing patient safety by replacing human hand-eye coordination with machine precision motivates future work toward translating this technique to clinical use.
Image-guided robots have been widely used for bone shaping and percutaneous access to interventional sites. However, due to high-accuracy requirements and proximity to sensitive nerves and brain tissues, the adoption of robots in inner-ear surgery has been slower. In this paper the authors present their recent work towards developing two image-guided industrial robot systems for accessing challenging inner-ear targets. Features of the systems include optical tracking of the robot base and tool relative to the patient and Kalman filter-based data fusion of redundant sensory information (from encoders and optical tracking systems) for enhanced patient safety. The approach enables control of differential robot positions rather than absolute positions, permitting simplified calibration procedures and reducing the reliance of the system on robot calibration in order to ensure overall accuracy. Lastly, the authors present the results of two phantom validation experiments simulating the use of image-guided robots in inner-ear surgeries such as cochlear implantation and petrous apex access.
A head-mounted parallel kinematic device for high precision skull surgery was developed that provides submillimetric accuracy in straight-line incisions. The system offers enhanced flexibility due to the absence of a rigid fixation frame.
Cochlear implants (CI) are electronic devices incorporating an electrode inserted into the human cochlea for direct electric stimulation of the auditory nerve. The implantation has become the standard treatment for patients with severe-to-profound sensorineural loss not aidable with conventional hearing aids. The state of the art operative technique is a facial recess approach to the middle ear, following the opening of the scala tympani (cochleostomy) and insertion of the electrode array. The facial recess approach is applicable only by experienced surgeons and optimal CI results primarily depend on optimal electrode placement and minimal traumatic insertion. This also requires a certain amount of experience. Additionally several groups work on minimally-invasive approaches to the cochlea, resulting in the necessity to insert the implant via a keyhole access, which is not applicable with current techniques. This paper presents a mechatronic device for an automated insertion of the electrode array of a cochlear implant system. Being designed especially for minimally-invasive approaches, the tool is also applicable for regular facial recess approaches. Moreover the device allows reliable and repeatable insertion studies at synthetic models or cadaver specimen. The functionality of the tool is proofed with first experiments on a synthetic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.