N2 and CO2 sorption measurements with in situ dilatometry implemented in a commercial volumetric sorption instrument were performed at 77 and 273 K, respectively. The resolution of the linear deformation was about ±0.2 μm. To separate effects due to microporosity, external surface area and mesopores synthetic porous carbons (xerogels) with different external surface areas and microporosities were applied as a model system. The experimental data show that the relative length change of the monolithic carbon xerogels investigated passes different stages during ad- and desorption, which are connected to micropore-, multilayer- and mesopore-sorption. The length change observed in the range of micropore and surface adsorption was found to be nonmonotonic and to take negative as well as positive values, with the maximum swelling observed being on the order of 4‰. With respect to the length change, the micropore structure seems to have the most significant impact on the overall length change, while the external surface is only of minor importance. Quantiative analysis of the deformation according to the models of Bangham and Scherer for the length change in the range of multilayer- and mesopore-adsorption allows extracting the macrosopic as well as the skeletal Young's modulus.
Adsorption-induced deformation of a monolithic, synthetic carbon of clearly distinguishable micro- and mesoporosity was analyzed by in situ dilatometry with N2 (77 K), Ar (77 K), CO2 (273 K), and H2O (298 K). A characteristic nonmonotonic shape of the strain isotherm showing contraction of the sample at initial micropore adsorption followed by expansion toward completion of micropore filling was found for all adsorbates. However, the extent of contraction and expansion varied significantly with the adsorbate type. The deformation differences observed were compared with the density ratio of the adsorbates within the micropores and the respective unconfined fluids. In particular, CO2 caused the least contraction of the sample, while in parallel adsorbed CO2 molecules were predicted to be considerably compacted inside carbon micropores compared to bulk liquid CO2. On the contrary, the packing of H2O molecules within carbon micropores is less dense than in the bulk liquid and adsorption of H2O produced the most pronounced contraction. N2 and Ar, both exhibiting essentially the same densities in adsorbed and bulk liquid phase, induced very similar deformation of the sample. These findings support theoretical predictions, which correlate adsorption-induced deformation and packing of molecules adsorbed in micropores. Additionally for the first time, we demonstrated with the N2 strain isotherm the existence of two nonmonotonic stages of subsequent contraction and expansion in the regions of micropore and mesopore filling. This characteristic behavior is expected for any micro- and mesoporous material.
For years, the space charge layer formation in Li-conducting solid electrolytes and its relevance to so-called all solid-state batteries have been controversially discussed from experimental and theoretical perspectives. In this work, we observe the phenomenon of space charge layer formation using impedance spectroscopy at different electrode polarizations. We analyze the properties of these space charge layers using a physical equivalent circuit describing the response of the solid electrolytes and solid/solid electrified interfaces under blocking conditions. The elements corresponding to the interfacial layers are identified and analyzed with different electrode metals and applied biases. The effective thickness of the space charge layer was calculated to be ∼60 nm at a bias potential of 1 V. In addition, it was possible to estimate the relative permittivity of the electrolytes, specific resistance of the space charge layer, and the effective thickness of the electric double layer (∼0.7 nm).
Structural hierarchy, porosity, and isotropy/anisotropy are highly relevant factors for mechanical properties and thereby the functionality of porous materials. However, even though anisotropic and hierarchically organized, porous materials are well known in nature, such as bone or wood, producing the synthetic counterparts in the laboratory is difficult. We report for the first time a straightforward combination of sol–gel processing and shear-induced alignment to create hierarchical silica monoliths exhibiting anisotropy on the levels of both, meso- and macropores. The resulting material consists of an anisotropic macroporous network of struts comprising 2D hexagonally organized cylindrical mesopores. While the anisotropy of the mesopores is an inherent feature of the pores formed by liquid crystal templating, the anisotropy of the macropores is induced by shearing of the network. Scanning electron microscopy and small-angle X-ray scattering show that the majority of network forming struts is oriented towards the shearing direction; a quantitative analysis of scattering data confirms that roughly 40% of the strut volume exhibits a preferred orientation. The anisotropy of the material’s macroporosity is also reflected in its mechanical properties; i.e., the Young’s modulus differs by nearly a factor of 2 between the directions of shear application and perpendicular to it. Unexpectedly, the adsorption-induced strain of the material exhibits little to no anisotropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.