We address the question of whether a point inside a domain bounded by a simple closed arc spline is circularly visible from a specified arc from the boundary. We provide a simple and numerically stable linear time algorithm that solves this problem. In particular, we present an easy-to-check criterion that implies that a point is not visible from a specified boundary arc.
Zusammenfassung Viele Anwendungen erfordern eine kompakte und effiziente Kurvenrepräsentation von Daten. Kreisbogensplines -Kurven, die stückweise aus glatt aneinander gesetzten Kreisbögen und Strecken bestehen -überzeugen aus Anwendungssicht durch ihre effektive Beschreibbarkeit. Das SMAP-Verfahren garantiert unter Einhaltung einer einstellbaren maximalen Abweichung einen segmentzahl-minimalen Kreisbogenspline. Um etwa den Anforderungen bei der Erzeugung digitaler Karten gerecht zu werden, wird eine Erweiterung des Verfahrens vorgestellt, die Liniensegmente an geeigneten Stellen in die Lösungskurve integriert.Summary Various applications require a compact and efficient data representation by curves. Arc splines are curves consisting of piecewise smoothly joined arcs and line segments. From a practical point of view, they stand out due to their efficient descriptiveness. The SMAP approach guarantees an arc spline with a minimal number of segments for any given user-specified tolerance. For instance, to satisfy the requirements for generating digital maps, we introduce an extension which integrates line segments into the solution curve at appropriate positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.