SummaryThe level of penicillin resistance in clinical isolates of Streptococcus pneumoniae depends not only on the reduced affinity of penicillin binding proteins (PBPs) but also on the functioning of enzymes that modify the stem peptide structure of cell wall precursors. We used mariner mutagenesis in search of additional genetic determinants that may further attenuate the level of penicillin resistance in the bacteria. A mariner mutant of the highly penicillinresistant S. pneumoniae strain Pen6 showed reduction of the penicillin minimum inhibitory concentration (MIC) from 6 to 0.75 mg ml -1 . Decrease in penicillin MIC was also observed upon introduction of the mutation (named provisionally adr, for attenuator of drug resistance) into representatives of major epidemic clones of penicillin-resistant pneumococci. Attenuation of resistance levels was specific for b-lactams. The adr mutant has retained unchanged (low affinity) PBPs, unaltered murM gene and unchanged cell wall stem peptide composition, but the mutant became hypersensitive to exogenous lysozyme and complementation experiments showed that both phenotypes -reduced resistance and lysozyme sensitivity -were linked to the defective adr gene. DNA sequence comparison and chemical analysis of the cell wall identified adr as the structural gene of the pneumococcal peptidoglycan O-acetylase.
Two-dimensional liquid chromatography (2D-LC) is increasingly being viewed as a viable tool for solving difficult separation problems, ranging from targeted separations of structurally similar molecules to untargeted separations of highly complex mixtures. In spite of this performance potential, though, many users find method development challenging and most frequently cite the "incompatibility" between the solvent systems used in the first and second dimensions as a major obstacle. This solvent strength related incompatibility can lead to severe peak distortion and loss of resolution and sensitivity in the second dimension. In this paper, we describe a novel approach to address the incompatibility problem, which we refer to as Active Solvent Modulation (ASM). This valve-based approach enables dilution of D effluent with weak solvent prior to transfer to theD column but without the need for additional instrument hardware. ASM is related to the concept we refer to as Fixed Solvent Modulation (FSM), with the important difference being that ASM allows toggling of the diluent stream during each D separation cycle. In this work, we show that ASM eliminates the major drawbacks of FSM including complex elution solvent profiles, baseline disturbances, and slowD re-equilibration and demonstrate improvements in D separation quality using both simple small molecule probes and degradants of heat-treated bovine insulin as case studies. We believe that ASM will significantly ease method development for 2D-LC, providing a path to practical methods that involve both highly complementaryD and D separations and sensitive detection.
The separation of ionized bases by reversed-phase liquid chromatography with alkyl silica columns often leads to severely tailed bands that are highly detrimental. Band shape and its dependence on sample mass are notably different when mobile-phase pH is changed, and this behavior has not been previously explained. Ionized silanols present in the stationary phase have been credited with a role in determining peak shape. In the present study, separations on two different polymer columns were compared with those previously obtained on alkyl silica phases. Because silanols are absent from polymer columns, this comparison enabled us to assess the role of silanols in separations on alkyl silica phases and to offer an explanation of why band shape changes with sample size and mobile-phase pH for both polymer and silica-based phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.