The skin represents an attractive target tissue for vaccination against respiratory viruses such as SARS-CoV-2. Laser-facilitated epicutaneous immunization (EPI) has been established as a novel technology to overcome the skin barrier, which combines efficient delivery via micropores with an inherent adjuvant effect due to the release of danger-associated molecular patterns. Here we delivered the S1 subunit of the Spike protein of SARS-CoV-2 to the skin of BALB/c mice via laser-generated micropores with or without CpG-ODN1826 or the B subunit of heat-labile enterotoxin of E.coli (LT-B). EPI induced serum IgG titers of 1:3200 that could be boosted 5 to 10-fold by co-administration of LT-B and CpG, respectively. Sera were able to inhibit binding of the spike protein to its receptor ACE2. Our data indicate that delivery of recombinant spike protein via the skin may represent an alternative route for vaccines against Covid-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.