The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research ( http://www.zmg.uni-mainz.de/tetmouse/ ).
We have analyzed several cases of Beckwith-Wiedemann syndrome (BWS) with Wilms' tumor in a familial setting, which give insight into the complex controls of imprinting and gene expression in the chromosome 11p15 region. We describe a 2.2-kbp microdeletion in the H19͞insulin-like growth factor 2 (IGF2)-imprinting center eliminating three target sites of the chromatin insulator protein CTCF that we believe here is necessary, but not sufficient, to cause BWS and Wilms' tumor. Maternal inheritance of the deletion is associated with IGF2 loss of imprinting and up-regulation of IGF2 mRNA. However, in at least one affected family member a second genetic lesion (a duplication of maternal 11p15) was identified and accompanied by a further increase in IGF2 mRNA levels 35-fold higher than control values. Our results suggest that the combined effects of the H19͞IGF2-imprinting center microdeletion and 11p15 chromosome duplication were necessary for manifestation of BWS.insulin-like growth factor 2 ͉ H19 ͉ differentially methylated region
Oncogenic activation of the receptor tyrosine kinase ERBB2 is a key event in the development of a number of epithelial malignancies. In these tumors, high levels of ERBB2 are strongly associated with metastatic disease and poor prognosis. Paradoxically, an inherent cellular response to hypermitogenic signaling by ERBB2 and other oncogenes seems to be growth arrest, rather than proliferation. Molecular characterization of this yet undefined antiproliferative state in independent cell lines overexpressing either wild-type ERBB2 or the mutationally activated receptor unveiled a dramatic induction of the A5B1 integrin fibronectin receptor. A5 Integrin up-regulation is mainly a transcriptional response mediated by the hypoxia-inducible transcription factors (HIF), leading to a massive increase in membrane-resident receptor molecules and enhanced fibronectin adhesiveness of the respective cells. Functionally, ERBB2-dependent ligation of fibronectin results in improved survival of mammary adenocarcinoma cells under adverse conditions, like serum withdrawal, hypoxia, and chemotherapy. HIF-1A is an independent predictor of poor overall survival in patients with breast cancer. In particular, HIF-1A overexpression correlates significantly with early local relapse and distant metastasis, a phenotype also highly characteristic of ERBB2-positive tumors. As HIF-1A is known to be stabilized by ERBB2 signaling under normoxic conditions, we propose that A5 integrin is a major effector in this regulatory circuit and may represent the molecular basis for the HIF-1A-dependent aggressiveness observed in ERBB2-overexpressing breast carcinomas. Hypermitogenic ERBB2 signaling and tumor hypoxia may act synergistically to favor the establishment of chemoresistant dormant micrometastatic cells frequently observed in patients with breast cancer. This new insight could be the basis for additional approaches complementing current cancer therapy. (Cancer Res 2006; 66(7): 3715-25)
Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5-E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.
Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5-E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.