Summary 1.The spatial pattern of tree species retains signatures of factors and processes such as dispersal, available resource patches for establishment, competition and demographics. Comparison of the spatial pattern of different size classes can thus help to reveal the importance and characteristics of the underlying processes. However, tree dynamics may be masked by large-scale heterogeneous site conditions, e.g. when the restricting size of regeneration sites superimposes emergent patterns. 2.Here we ask how environmental heterogeneity may influence the spatial dynamics of plant communities. We compared the spatial patterns and demographics of western hemlock in a homogeneous and a heterogeneous site of old-growth Douglas-fir forests on Vancouver Island using recent techniques of point pattern analysis. We used homogeneous and inhomogeneous K -and pair-correlation functions, and case-control studies to quantify the change in spatial distribution for different size classes of western hemlock. 3. Our comparative analyses show that biological processes interacted with spatial heterogeneity, leading to qualitatively different population dynamics at the two sites. Population structure, survival and size structure of western hemlock were different in the heterogeneous stand in such a way that, compared to the homogeneous stand, seedlings were more clustered, seedling densities higher, seedling mortality lower, adult growth faster and adult mortality higher. Under homogeneous site conditions, seedling survival was mainly abiotically determined by random arrival in small gaps with limiting light. At the heterogeneous site, seedling densities and initial survival were much higher, leading to strong density-dependent mortality and selection for faster growing individuals in larger size classes. We hypothesise that the dynamics of the heterogeneous stand were faster due to asymmetric competition with disproportionate benefit to taller plants. 4. Synthesis . Our study supports the hypothesis that successional dynamics are intensified in heterogeneous forest stands with strong spatial structures and outlines the importance of spatial heterogeneity as a determinant of plant population dynamics and pattern formation.
While the successional dynamics and large-scale structure of Douglas-fir forest in the Pacific Northwest region is well studied, the fine-scale spatial characteristics at the stand level are still poorly understood. Here we investigated the fine-scale spatial structure of forest on Vancouver Island, in order to understand how the three dominant species, Douglas-fir, western hemlock, and western redcedar, coexist and partition space along a chronosequence comprised of immature, mature, and oldgrowth stands. We quantified the changes in spatial distribution and association of the species along the chronosequence using the scale-dependent point pattern analyses pair-correlation function g(r) and Ripley's L-function. Evidence on intra-and interspecific competition was also inferred from correlations between nearest-neighbor distances and tree size. Our results show that 1) the aggregation of Douglas-fir in oldgrowth was primarily caused by variation in local site characteristics, 2) only surviving hemlock were more regular than their pre-mortality patterns, a result consistent with strong intra-specific competition, 3) inter-specific competition declined rapidly with stand age due to spatial resource partitioning, and 4) tree death was spatially randomly distributed among larger overstory trees. The study highlights the importance of spatial heterogeneity for the long-term coexistence of shade-intolerant pioneer Douglas-fir and shade-tolerant western hemlock and western redcedar. S. Getzin
The assertion that the spatial location of different species is independent of each other is fundamental in major ecological theories such as neutral theory that describes a stochastic geometry of biodiversity. However, this assertion has rarely been tested. Here we use techniques of spatial point pattern analysis to conduct a comprehensive test of the independence assertion by analysing data from three large forest plots with different species richness: a species-rich tropical forest at Barro Colorado Island (Panama), a tropical forest in Sinharaja (Sri Lanka), and a temperate forest in Changbaishan (China). We hypothesize that stochastic dilution effects owing to increasing species richness overpower signals of species associations, thereby yielding approximate species independence. Indeed, the proportion of species pairs showing: (i) no significant interspecific association increased with species richness, (ii) segregation decreased with species richness, and (iii) small-scale interspecific interaction decreased with species richness. This suggests that independence may indeed be a good approximation in the limit of very species-rich communities. Our findings are a step towards a better understanding of factors governing species-rich communities and we propose a hypothesis to explain why species placement in species-rich communities approximates independence.
Vegetation gap patterns in arid grasslands, such as the "fairy circles" of Namibia, are one of nature's greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomasswater feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.drylands | spatial pattern | Triodia grass | Turing instability | vegetation gap P attern-formation theory (1) and the influence of Alan Turing's work on understanding biological morphogenesis (2) are increasingly recognized in environmental sciences (3). Vegetation patterns resulting from self-organization occur frequently in waterlimited ecosystems and, similar to Turing patterns, show pattern morphologies that change from gaps to stripes (labyrinths) to spots with decreasing plant-available moisture (4-6). The patterns may emerge on completely flat and homogeneous substrate and are induced by positive feedbacks between local vegetation growth and water transport toward the growth location.
Over the last two decades spatial point pattern analysis (SPPA) has become increasingly popular in ecological research. To direct future work in this area we review studies using SPPA techniques in ecology and related disciplines. We first summarize the key elements of SPPA in ecology (i.e. data types, summary statistics and their estimation, null models, comparison of data and models, and consideration of heterogeneity); second, we review how ecologists have used these key elements; and finally, we identify practical difficulties that are still commonly encountered and point to new methods that allow current key questions in ecology to be effectively addressed. Our review of 308 articles published over the period 1992–2012 reveals that a standard canon of SPPA techniques in ecology has been largely identified and that most of the earlier technical issues that occupied ecologists, such as edge correction, have been solved. However, the majority of studies underused the methodological potential offered by modern SPPA. More advanced techniques of SPPA offer the potential to address a variety of highly relevant ecological questions. For example, inhomogeneous summary statistics can quantify the impact of heterogeneous environments, mark correlation functions can include trait and phylogenetic information in the analysis of multivariate spatial patterns, and more refined point process models can be used to realistically characterize the structure of a wide range of patterns. Additionally, recent advances in fitting spatially‐explicit simulation models of community dynamics to point pattern summary statistics hold the promise for solving the longstanding problem of linking pattern to process. All these newer developments allow ecologists to keep up with the increasing availability of spatial data sets provided by newer technologies, which allow point patterns and environmental variables to be mapped over large spatial extents at increasingly higher image resolutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.