Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO -eq. ha yr ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO (27.7 ± 17.3 t CO ha yr ) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N O-N ha yr ) and methane emissions (30.8 ± 69.8 kg CH -C ha yr ) were lower than expected except for CH emissions from nutrient-poor acidic sites. At single peatlands, CO emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO on WTD for the complete data set. Thus, regionalization of CO emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (N ) as a variable combining soil nitrogen stocks with WTD. CO increased with N across peatlands. Soils with comparatively low SOC concentrations showed as high CO emissions as true peat soils because N was similar. N O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.
Wetlands can either be net sinks or net sources of greenhouse gases (GHGs), depending on the mean annual water level and other factors like average annual temperature, vegetation development, and land use. Whereas drained and agriculturally used peatlands tend to be carbon dioxide (CO<sub>2</sub>) and nitrous oxide (N<sub>2</sub>O) sources but methane (CH<sub>4</sub>) sinks, restored (i.e. rewetted) peatlands rather incorporate CO<sub>2</sub>, tend to be N<sub>2</sub>O neutral and release CH<sub>4</sub>. One of the aims of peatland restoration is to decrease their global warming potential (GWP) by reducing GHG emissions. <br><br> We estimated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (1 July 2007–30 June 2009) in an Atlantic raised bog in northwest Germany. We set up three study sites representing different land use intensities: intensive grassland (deeply drained, mineral fertilizer, cattle manure and 4–5 cuts per year); extensive grassland (rewetted, no fertilizer or manure, up to 1 cutting per year); near-natural peat bog (almost no anthropogenic influence). Daily and annual greenhouse gas exchange was estimated based on closed-chamber measurements. CH<sub>4</sub> and N<sub>2</sub>O fluxes were recorded bi-weekly, and net ecosystem exchange (NEE) measurements were carried out every 3–4 weeks. Annual sums of CH<sub>4</sub> and N<sub>2</sub>O fluxes were estimated by linear interpolation while NEE was modelled. <br><br> Regarding GWP, the intensive grassland site emitted 564 ± 255 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup> and 850 ± 238 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup> in the first (2007/2008) and the second (2008/2009) measuring year, respectively. The GWP of the extensive grassland amounted to −129 ± 231 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup> and 94 ± 200 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup>, while it added up to 45 ± 117 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup> and −101 ± 93 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup> in 2007/08 and 2008/09 for the near-natural site. In contrast, in calendar year 2008 GWP aggregated to 441 ± 201 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup>, 14 ± 162 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup> and 31 ± 75 g CO<sub>2</sub>–C equivalents m<sup>−2</sup> yr<sup>−1</sup> for the intensive grassland, extensive grassland, and near-natural site, respectively. <br><br> Despite inter-annual variability, rew...
Abstract. Organic soils in peatlands store a great proportion of the global soil carbon pool and can lose carbon via the atmosphere due to degradation. In Germany, most of the greenhouse gas (GHG) emissions from organic soils are attributed to sites managed as grassland. Here, we investigated a land use gradient from near-natural wetland (NW) to an extensively managed (GE) to an intensively managed grassland site (GI), all formed in the same bog complex in northern Germany. Vertical depth profiles of δ13C, δ15N, ash content, C / N ratio and bulk density as well as radiocarbon ages were studied to identify peat degradation and to calculate carbon loss. At all sites, including the near-natural site, δ13C depth profiles indicate aerobic decomposition in the upper horizons. Depth profiles of δ15N differed significantly between sites with increasing δ15N values in the top soil layers paralleling an increase in land use intensity owing to differences in peat decomposition and fertilizer application. At both grassland sites, the ash content peaked within the first centimetres. In the near-natural site, ash contents were highest in 10–60 cm depth. The ash profiles, not only at the managed grassland sites, but also at the near-natural site indicate that all sites were influenced by anthropogenic activities either currently or in the past, most likely due to drainage. Based on the enrichment of ash content and changes in bulk density, we calculated the total carbon loss from the sites since the peatland was influenced by anthropogenic activities. Carbon loss at the sites increased in the following order: NW < GE < GI. Radiocarbon ages of peat in the topsoil of GE and GI were hundreds of years, indicating the loss of younger peat material. In contrast, peat in the first centimetres of the NW was only a few decades old, indicating recent peat growth. It is likely that the NW site accumulates carbon today but was perturbed by anthropogenic activities in the past. Together, all biogeochemical parameters indicate a degradation of peat due to (i) conversion to grassland with historical drainage and (ii) land use intensification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.