The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems.
Plant cell cultures have been used as expression hosts for recombinant proteins for over two decades. The quality of plant cell culture-produced proteins such as full-size monoclonal antibodies has been shown to be excellent in terms of protein folding and binding activity, but the productivity and yield fell short of what was achieved using mammalian cell culture, in which the key to gram-per-liter expression levels was strain selection and medium/process optimization. We carried out an extensive media analysis and optimization for the production of the full-size human anti-HIV antibody 2G12 in N. tabacum cv. BY-2. Nitrogen source and availability was found to be one key factor for the volumetric productivity of plant cell cultures. Increased amounts of nitrate in the culture medium had a dramatic impact on protein yields, resulting in a 10-20-fold increase in product accumulation through a combination of enhanced secretion and higher stability. The results were scalable from shake flasks to stirred-tank bioreactors, where the maximum yield per cultivation volume was 8 mg L(-1) over 7 days. During the stationary phase, antibody levels were 150-fold higher in nitrogen-enriched medium compared to standard medium. The enhanced medium appeared not to affect antibody quality and activity, as determined by Western blots, surface plasmon resonance binding assays and N-glycan analysis.
SummaryThe EU Sixth Framework Programme Integrated Project 'Pharma-Planta' developed an approved manufacturing process for recombinant plant-made pharmaceutical proteins (PMPs) using the human HIV-neutralizing monoclonal antibody 2G12 as a case study. In contrast to the wellestablished Chinese hamster ovary platform, which has been used for the production of therapeutic antibodies for nearly 30 years, only draft regulations were initially available covering the production of recombinant proteins in transgenic tobacco plants. Whereas recombinant proteins produced in animal cells are secreted into the culture medium during fermentation in bioreactors, intact plants grown under nonsterile conditions in a glasshouse environment provide various 'plant-specific' regulatory and technical challenges for the development of a process suitable for the acquisition of a manufacturing licence for clinical phase I trials. During upstream process development, several generic steps were addressed (e.g. plant transformation and screening, seed bank generation, genetic stability, host plant uniformity) as well as productspecific aspects (e.g. product quantity). This report summarizes the efforts undertaken to analyse and define the procedures for the GMP/GACP-compliant upstream production of 2G12 in transgenic tobacco plants from gene to harvest, including the design of expression constructs, plant transformation, the generation of production lines, master and working seed banks and the detailed investigation of cultivation and harvesting parameters and their impact on biomass, product yield and intra/interbatch variability. The resulting procedures were successfully translated into a prototypic manufacturing process that has been approved by the German competent authority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.