In patients with non-small cell lung cancer (NSCLC), the most frequent oncogene driver mutation in Western countries is Kirsten rat sarcoma viral oncogene homolog (KRAS), and KRAS-mutant NSCLC is associated with smoking. There are various sources of biological heterogeneity of KRAS-mutant NSCLC, including different genotypes that may be associated with specific clinical outcomes, the presence of other co-mutations that exhibit different biological features and drug sensitivity patterns, and mutant allelic content. The efficacy of chemotherapy in patients with KRAS-mutant NSCLC is generally poor and numerous novel therapeutic strategies have been developed. These approaches include targeting KRAS membrane associations, targeting downstream signalling pathways, the use of KRAS synthetic lethality, direct targeting of KRAS, and immunotherapy. Of these, immunotherapy may be one of the most promising treatment approaches for patients with KRAS-mutant NSCLC. Recent data also suggest the potential for distinct efficacy of immunotherapy according to the presence of other co-mutations. In view of the biological heterogeneity of KRAS-mutant NSCLC, treatment will likely need to be individualised and, in future, may require the use of rational combinations of treatment, many of which are currently under investigation. 1. Introduction Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are found in approximately 20-25% of lung adenocarcinomas in Western countries [1-3] and in approximately 10-15% of cases in Asia [4,5]. Considered globally, KRAS-mutant tumours constitute the most frequent potentially targetable molecular subtype of non-small-cell lung cancer (NSCLC) [6]. As is the case with the vast majority of potentially
Transforming growth factor-beta (TGF-β) signaling regulates a wide range of biological processes. TGF-β plays an important role in tumorigenesis and contributes to the hallmarks of cancer, including tumor proliferation, invasion and metastasis, inflammation, angiogenesis, and escape of immune surveillance. There are several pharmacological approaches to block TGF-β signaling, such as monoclonal antibodies, vaccines, antisense oligonucleotides, and small molecule inhibitors. Galunisertib (LY2157299 monohydrate) is an oral small molecule inhibitor of the TGF-β receptor I kinase that specifically downregulates the phosphorylation of SMAD2, abrogating activation of the canonical pathway. Furthermore, galunisertib has antitumor activity in tumor-bearing animal models such as breast, colon, lung cancers, and hepatocellular carcinoma. Continuous long-term exposure to galunisertib caused cardiac toxicities in animals requiring adoption of a pharmacokinetic/pharmacodynamic-based dosing strategy to allow further development. The use of such a pharmacokinetic/pharmacodynamic model defined a therapeutic window with an appropriate safety profile that enabled the clinical investigation of galunisertib. These efforts resulted in an intermittent dosing regimen (14 days on/14 days off, on a 28-day cycle) of galunisertib for all ongoing trials. Galunisertib is being investigated either as monotherapy or in combination with standard antitumor regimens (including nivolumab) in patients with cancer with high unmet medical needs such as glioblastoma, pancreatic cancer, and hepatocellular carcinoma. The present review summarizes the past and current experiences with different pharmacological treatments that enabled galunisertib to be investigated in patients.
Increasing evidence has accumulated for an involvement of the inactivation of tumour suppressor genes at chromosome 10q in the carcinogenesis of brain tumours, melanomas, and carcinomas of the lung, the prostate, the pancreas, and the endometrium. The gene DMBT1 (Deleted in Malignant Brain Tumours 1) is located at chromosome 10q25.3 ± q26.1, within one of the putative intervals for tumour suppressor genes. DMBT1 is a member of the scavenger-receptor cysteine-rich (SRCR) superfamily and displays homozygous deletions or lack of expression in glioblastoma multiforme, medulloblastoma, and in gastrointestinal and lung cancers. Based on these properties, DMBT1 has been proposed to be a candidate tumour suppressor gene. We have determined the genomic sequence of DMBT1 to allow analyses of mutations. The gene has at least 54 exons that span a genomic region of about 80 kb. We have identi®ed a putative exon with coding potential for a transmembrane domain. Our data further suggest that alternative splicing gives rise to isoforms of DMBT1 with a dierential utilization of SRCR domains and SRCR interspersed domains. The major part of the gene harbours locus speci®c repeats. These repeats may point to the DMBT1 locus as a region susceptible to chromosomal instability.
Deleted in Malignant Brain Tumors 1 (DMBT1) at chromosome region 10q25.3-q26.1 has been proposed as a candidate tumor-suppressor gene for brain, digestive tract, and lung cancer. Recent studies on its expression in lung cancer have led to divergent results and have raised a controversial discussion. Moreover, DMBT1 has been implicated with epithelial protection in the respiratory tract. We thus wondered how a loss of its expression could be related to carcinogenesis in the lung. To address these issues, we investigated the DMBT1 expression and location in the normal lung and lung cancer. By reverse-transcription PCR, a down-regulation of the DMBT1 expression in lung cancer cell lines is commonly detected. Immunohistochemical studies in situ demonstrate that there are also low steady-state levels of DMBT1 in the normal respiratory epithelium. However, an up-regulation takes place in the tumor-flanking epithelium and upon respiratory inflammation. Lung carcinomas show increased DMBT1 expression compared to that of undiseased lung tissue, but decreased DMBT1 levels compared to that of tumor-flanking and inflammatory tissue. A switch from a lumenal secretion to a secretion to the extracellular matrix takes place during lung carcinogenesis. Our data may resolve the controversial discussion on its expression in lung carcinomas. We hypothesize that the changes of the DMBT1 expression and location do reflect a time course that may point to possible mechanisms for its role in epithelial cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.