Walking is an essential part of almost all activities of daily living. We use different gait patterns in different situations, e.g., moving around the house, performing various sports, or when compensating for an injury. However, how humans perform this gait tailoring remains a partially unknown process. To this end, the influence of various performance metrics on the optimality and diversity of gait patterns can provide us with more insight. To analyse gait in terms of pattern diversity and performance metrics related to physical aspects, such as joint torque, fatigue, and manipulability, we propose a multi-metric gait analysis framework that simultaneously accounts for these parameters. We used a recorded set of versatile gait patterns that are already dynamically stable and physiologically feasible. To that end, 45 gait variations-varying in stride length, step height, and walking speed-were recorded in a motion capture experiment. Results of analysis using the recorded dataset are presented for a baseline case (with all optimisation weights set to one), which serves as the first step for future research, in particular giving insights into specific aspects of the gait, e.g., joint loading, long-term performance, and capacity to sustain ground reaction forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.