Hydrated electrons were prepared by multi-photon ionization of neat water with 266 nm light. Using femtosecond pump-probe spectroscopy the dynamics of geminate recombination of the solvated electrons were studied over a wide temperature (296 K ≤T≤ 660 K) and density (0.18 g cm(-3)≤ρ≤ 1.00 g cm(-3)) range extending from the liquid well into the supercritical phase of water. The probability that hydrated electrons escape an initial recombination was found to strongly decrease with increasing temperature. In contrast, the isothermal density-dependence of this survival probability above the critical temperature was surprisingly weak. The peculiar dependence of the initial electron annihilation process on the thermodynamic state variables is discussed in terms of the Onsager model for initial recombination of ion pairs and an effective shielding of the electrostatic interactions of the recombining partners. A finite escape probability for a dielectric constant approaching unity can be interpreted by the existence of a minor fraction of highly mobile electrons created via autoionization.
Independent pairs (IP) and Monte Carlo (MC) simulations are employed to model experimental femtosecond time-resolved pump-probe spectroscopic data on the geminate recombination dynamics of solvated electrons in liquid-to-supercritical water. The hydrated electron was created by two-photon ionization of the neat fluid with a total ionization energy of 9.3 eV. In both numerical approaches, the ejection length, , (i.e. the distance from the ionization core, at which the electron is thermally and spatially localized) is used as the primary adjustable fitting parameter that can bring both model simulations into quantitative agreement with the ultrafast kinetic experiment. The influence of the thermodynamic conditions on the ejection length and on the recombination mechanism is discussed. Whereas in the compressed liquid associated with a high dielectric constant (ε ≥ 20), the electron recombines predominantly with the OH radical, the dissociative recombination via charge neutralization with the hydronium cation takes over at small dielectric constants (ε < 20). The importance of charge-dipole interactions for Monte-Carlo simulations of the recombination reactions of the hydrated electrons in the low-permittivity region is stressed.
Strong light-induced absorption has been observed in lithium niobate crystals doped with magnesium after application of femtosecond illumination. In this material there are no Nb-on-Li-site defects and hence no antisite polarons occur, but small free polarons close to the conduction band can be generated. The light-induced absorption observed is attributed to these polarons. For LiNbO 3 :Mg, their decay times are about two orders of magnitude smaller than those of the Nb-on-Li-site polarons in undoped material. The results are relevant for a better understanding of the suppression of the so-called optical damage in these crystals and for their use in femtosecond applications.PACS 42.70.Mp · 71.38.-k · 42.50.Gy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.