In this paper we propose a particle filter localization approach, based on stereo visual odometry (VO) and semantic information from indoor environments, for mini-aerial robots. The prediction stage of the particle filter is performed using the 3D pose of the aerial robot estimated by the stereo VO algorithm. This predicted 3D pose is updated using inertial as well as semantic measurements. The algorithm processes semantic measurements in two phases; firstly, a pre-trained deep learning (DL) based object detector is used for real time object detections in the RGB spectrum. Secondly, from the corresponding 3D point clouds of the detected objects, we segment their dominant horizontal plane and estimate their relative position, also augmenting a prior map with new detections. The augmented map is then used in order to obtain a drift free pose estimate of the aerial robot. We validate our approach in several real flight experiments where we compare it against ground truth and a state of the art visual SLAM approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.