We introduce a novel first-order stochastic swarm intelligence (SI) model in the spirit of consensus formation models, namely a consensus-based optimization (CBO) algorithm, which may be used for the global optimization of a function in multiple dimensions. The CBO algorithm allows for passage to the mean-field limit, which results in a nonstandard, nonlocal, degenerate parabolic partial differential equation (PDE). Exploiting tools from PDE analysis we provide convergence results that help to understand the asymptotic behavior of the SI model. We further present numerical investigations underlining the feasibility of our approach.
We consider a self-propelled interacting particle system for the collective behavior of swarms of animals, and extend it with an attraction term called roosting force, as it has been suggested in Ref. 30. This new force models the tendency of birds to overfly a fixed preferred location, e.g. a nest or a food source. We include roosting to the existing individual-based model and consider the associated mean-field and hydrodynamic equations. The resulting equations are investigated analytically looking at different asymptotic limits of the corresponding stochastic model. In addition to existing patterns like single mills, the inclusion of roosting yields new scenarios of collective behavior, which we study numerically on the microscopic as well as on the hydrodynamic level.
We consider interacting particle systems and their mean-field limits, which are frequently used to model collective aggregation and are known to demonstrate a rich variety of pattern formations. The interaction is based on a pairwise potential combining short-range repulsion and long-range attraction. We study particular solutions, which are referred to as flocks in the second-order models, for the specific choice of the Quasi-Morse interaction potential. Our main result is a rigorous analysis of continuous, compactly supported flock profiles for the biologically relevant parameter regime. Existence and uniqueness are proven for three space dimensions, while existence is shown for the two-dimensional case. Furthermore, we numerically investigate additional Morse-like interactions to complete the understanding of this class of potentials.
We consider a self-propelled particle system which has been used to describe
certain types of collective motion of animals, such as fish schools and bird
flocks. Interactions between particles are specified by means of a pairwise
potential, repulsive at short ranges and attractive at longer ranges. The
exponentially decaying Morse potential is a typical choice, and is known to
reproduce certain types of collective motion observed in nature, particularly
aligned flocks and rotating mills. We introduce a class of interaction
potentials, that we call Quasi-Morse, for which flock and rotating mills states
are also observed numerically, however in that case the corresponding
macroscopic equations allow for explicit solutions in terms of special
functions, with coefficients that can be obtained numerically without solving
the particle evolution. We compare thus obtained solutions with long-time
dynamics of the particle systems and find a close agreement for several types
of flock and mill solutions.Comment: 23 pages, 8 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.