DNA double-strand break (DSB) repair by nonhomologous end joining (NHEJ) requires the assembly of several proteins on DNA ends. Although biochemical studies have elucidated several aspects of the NHEJ reaction mechanism, much less is known about NHEJ in living cells, mainly because of the inability to visualize NHEJ repair proteins at DNA damage. Here we provide evidence that a pulsed near IR laser can produce DSBs without any visible alterations in the nucleus, and we show that NHEJ proteins accumulate in the irradiated areas. The levels of DSBs and Ku accumulation diminished in time, showing that this approach allows us to study DNA repair kinetics in vivo. Remarkably, the Ku heterodimers on DNA ends were in dynamic equilibrium with Ku70/80 in solution, showing that NHEJ complex assembly is reversible. Accumulation of XRCC4/ligase IV on DSBs depended on the presence of Ku70/80, but not DNA-PK CS. We detected a direct interaction between Ku70 and XRCC4 that could explain these requirements. Our results suggest that this assembly constitutes the core of the NHEJ reaction and that XRCC4 may serve as a flexible tether between Ku70/80 and ligase IV.DNA repair ͉ DNA-dependent protein kinase ͉ double-strand break repair ͉ fluorescence recovery after photobleaching ͉ live cell imaging
RNA interference is an evolutionarily conserved process in which expression of a specific gene is post-transcriptionally inhibited by a small interfering RNA (siRNA), which recognizes a complementary mRNA and induces its degradation. Currently, RNA interference is being used extensively to inhibit expression of specific genes for experimental and therapeutic purposes.
DNA damage provokes DNA repair, cell-cycle regulation and apoptosis. This DNA-damage response encompasses gene-expression regulation at the transcriptional and posttranslational levels. We show that cellular responses to UV-induced DNA damage are also regulated at the posttranscriptional level by microRNAs. Survival and checkpoint response after UV damage was severely reduced on microRNA-mediated gene-silencing inhibition by knocking down essential components of the microRNA-processing pathway (Dicer and Ago2). UV damage triggered a cell-cycle-dependent relocalization of Ago2 into stress granules and various microRNA-expression changes. Ago2 relocalization required CDK activity, but was independent of ATM/ATR checkpoint signalling, whereas UVresponsive microRNA expression was only partially ATM/ ATR independent. Both microRNA-expression changes and stress-granule formation were most pronounced within the first hours after genotoxic stress, suggesting that microRNA-mediated gene regulation operates earlier than most transcriptional responses. The functionality of the microRNA response is illustrated by the UV-inducible miR-16 that downregulates checkpoint-gene CDC25a and regulates cell proliferation. We conclude that microRNAmediated gene regulation adds a new dimension to the DNA-damage response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.