The therapeutic approach for acute myeloid leukemia (AML) remains challenging, since over the last four decades a stagnation in standard cytotoxic treatment has been observed. But within recent years, remarkable advances in the understanding of the molecular heterogeneity and complexity of this disease have led to the identification of novel therapeutic targets. In the last two years, seven new targeted agents (midostaurin, gilteritinib, enasidenib, ivosidenib, glasdegib, venetoclax and gemtuzumab ozogamicin) have received US Food and Drug Administration (FDA) approval for the treatment of AML. These drugs did not just prove to have a clinical benefit as single agents but have especially improved AML patient outcomes if they are combined with conventional therapy. In this review, we will focus on currently approved and promising upcoming agents and we will discuss controversial aspects and limitations of targeted treatment strategies.
We report the results of a single-center analysis of a cohort of 39 patients treated between 1997 and 2016 for transplantion-associated thrombotic microangiopathy. We evaluated 2 subgroups of patients: 24 patients treated between 1997 and 2014 who received conventional therapy and 15 patients treated with the complement-inhibiting monoclonal antibody eculizumab between 2014 and 2016. The conventional therapy group was treated predominantly with defibrotide alone or in combination with plasmapheresis or rituximab. Despite an initial response rate of 61%, only 4 patients (16%) were long-term survivors, 2 of whom had a low-risk thrombotic microangiopathy without multiorgan damage. Progression of thrombotic micorangiopathy and bacterial/fungal infections contributed equally to treatment failure. The overall response rate in the eculizumab group was significantly higher, at 93%. In addition, we were able to stop eculizumab treatment in 5 patients (33%), all of whom had high-risk thrombotic microangiopathy, due to sustained recovery. Despite the very good response in the eculizumab-treated group, we did not observe a significant improved overall survival, due primarily to a high rate of infection-related mortality (70%). Therefore, further studies are needed to identify the optimal therapeutic management approach for transplantation-associated thrombotic microangiopathy to improve its dismal outcome.
The majority of patients with acute myeloid leukemia (AML) are older and exhibit a poor prognosis even after intensive therapy. Inducing differentiation and apoptosis of leukemic blasts by DNA-hypomethylating agents, like e.g. azacytidine (AZA) and decitabine (DAC), represent well-tolerated alternative treatment approaches. Both agents show convincing response as single agents in AML. However, there is a lack of knowledge regarding molecular mechanisms and predictive biomarkers for these agents. Areas covered: This review will (i) provide an overview of the current knowledge of molecular mechanisms underlying the action of these drugs, (ii) report promising predictive biomarkers, (iii) elude on new combined treatment options, and (iv) discuss novel approaches to improve outcomes. A literature search was performed using PubMed to find recent major publications, which provide biological and clinical research about epigenetic therapy in AML patients. Expert commentary: Numerous studies have demonstrated that HMA therapy with AZA or DAC may lead to significant response rates, even in pre-treated patients. Nevertheless, there is still an unmet need to further improve outcome in elderly AML patients. Therefore, novel treatment combinations are needed and some of them, such as AZA plus venetoclax, already show promising results.
The immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide are highly effective treatments for multiple myeloma. However, virtually all patients eventually relapse due to acquired drug resistance with resistance-causing genetic alterations being found only in a small subset of cases. To identify non-genetic mechanisms of drug resistance, we here perform integrated global quantitative tandem mass tag (TMT)-based proteomic and phosphoproteomic analyses and RNA sequencing in five paired pre-treatment and relapse samples from multiple myeloma patients. These analyses reveal a CDK6-governed protein resistance signature that includes myeloma high-risk factors such as TRIP13 and RRM1. Overexpression of CDK6 in multiple myeloma cell lines reduces sensitivity to IMiDs while CDK6 inhibition by palbociclib or CDK6 degradation by proteolysis targeting chimeras (PROTACs) is highly synergistic with IMiDs in vitro and in vivo. This work identifies CDK6 upregulation as a druggable target in IMiD-resistant multiple myeloma and highlights the use of proteomic studies to uncover non-genetic resistance mechanisms in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.