The high intrinsic spin and long spin relaxation time of manganese-12-acetate (Mn(12)) makes it an archetypical single molecular magnet. While these characteristics have been measured on bulk samples, questions remain whether the magnetic properties replicate themselves in surface supported isolated molecules, a prerequisite for any application. Here we demonstrate that electrospray ion beam deposition facilitates grafting of intact Mn(12) molecules on metal as well as ultrathin insulating surfaces enabling submolecular resolution imaging by scanning tunneling microscopy. Using scanning tunneling spectroscopy we detect spin excitations from the magnetic ground state of the molecule at an ultrathin boron nitride decoupling layer. Our results are supported by density functional theory based calculations and establish that individual Mn(12) molecules retain their intrinsic spin on a well chosen solid support.
An ion beam source using electrospray ionization is presented for nondestructive vacuum deposition of mass‐selected large organic molecules and inorganic clusters. Electrospray ionization is used to create an ion beam from a solution containing the nanoparticles or molecules to be deposited. To form and guide the ion beam, radio frequency and electrostatic ion optics are utilized. The kinetic energy distribution of the particles is measured to control the beam formation and the landing process. The particle mass‐to‐charge ratio is analyzed by in situ time‐of‐flight mass spectrometry. To demonstrate the performance of the setup, deposition experiments with gold nanoclusters and bovine serum albumin proteins on graphite surfaces were performed and analyzed by ex situ atomic force microscopy. The small gold clusters are found to form three‐dimensional agglomerations at the surface, preferentially decorating the step edges. In contrast, bovine serum albumin creates two‐dimensional fractal nanostructures on the substrate terraces due to strong intermolecular interactions.
The magnetic properties of isolated TbPc(2) molecules supported on a Cu(100) surface are investigated by X-ray magnetic circular dichroism at 8 K in magnetic fields up to 5 T. The crystal field and magnetic properties of single molecules are found to be robust upon adsorption on a metal substrate. The Tb magnetic moment has Ising-like magnetization; XMCD spectra combined with multiplet calculations show that the saturation orbital and spin magnetic moment values reach 3 and 6 mu(B), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.