Stephania japonica is a slender climbing plant with peltate, triangular-ovate leaves. Not many research efforts have been devoted to investigate the anatomy and the mechanical properties of this type of leaf shape. In this study, displacement driven tensile tests with three cycles on different displacement levels are performed on petioles, venation and intercostal areas of the Stephania japonica leaves. Furthermore, compression tests in longitudinal direction are performed on petioles. The mechanical experiments are combined with light microscopy and X-ray tomography. The experiments show, that these plant organs and tissues behave in the finite strain range in a viscoelastic manner. Based on the results of the light microscopy and X-ray tomography, the plant tissue can be considered as a matrix material reinforced by fibers. Therefore, a continuum mechanical anisotropic viscoelastic material model at finite deformations is proposed to model such behavior. The anisotropy is specified as the so-called transverse isotropy, where the behavior in the plane perpendicular to the fibers is assumed to be isotropic. The model is obtained by postulating a Helmholtz free energy, which is split additively into an elastic and an inelastic part. Both parts of the energy depend on structural tensors to account for the transversely isotropic material behavior. The evolution equations for the internal variables, e.g. inelastic deformations, are chosen in a physically meaningful way that always fulfills the second law of thermodynamics. The proposed model is calibrated against experimental data, and the material parameters are identified. The model can be used for finite element simulations of this type of leaf shape, which is left open for the future work.
This work presents a new numerical approach to efficiently model the cathode's moving surface in the moving boundary value problem of electrochemical machining. Until recently, the process simulation with finite elements had the drawback of remeshing required by the changing surface geometries. This disadvantage was overcome by an innovative model formulation for the anodic dissolution that utilizes effective material parameters as well as the dissolution level as an internal variable and, thereby, does not require remeshing. Now, we suggest a new numerical method to model arbitrarily shaped and moving cathodes. Two methodologies are investigated to describe the time varying position of the cathode and compared in terms of implementational effort and numerical efficiency. In the first approach, we change the electric conductivity of elements within the cathode and, in a second approach, we apply Dirichlet boundary conditions on the nodes of corresponding elements. For both methods, elements on the cathode's surface are treated with effective material parameters. This procedure allows for the efficient simulation of industrially relevant, complex geometries without mesh adaptation. The model's performance is validated by means of analytical, numerical and experimental results from the literature. The short computation times make the approach interesting for industrial applications.
This work presents a new approach to efficiently model the cathode in the moving boundary value problem of electrochemical machining. Until recently, the process simulation with finite elements had the drawback of remeshing required by the changing surface geometries. This disadvantage was overcome by a novel model formulation for the anodic dissolution that utilizes effective material parameters as well as the dissolution level as an internal variable and, thereby, does not require remeshing. Now, we extend this concept to model arbitrarily shaped and moving cathodes. Two methodologies are investigated to describe the time varying position of the cathode. In the first approach, we change the electric conductivity of elements within the cathode and, in a second approach, we apply Dirichlet boundary conditions on the nodes of corresponding elements. For both methods, elements on the cathode's surface are treated with effective material parameters. This procedure allows for the efficient simulation of industrially relevant, complex geometries without mesh adaptation. The model's performance is validated by means of analytical, numerical and experimental results from the literature. The short computation times make the approach interesting for industrial applications.
Electro‐chemical machining (ECM) allows the removal of material based on the effect of anodic dissolution and without mechanical contact. Thus, it avoids tool abrasion as well as influencing the surface quality, for instance due to formed dislocations and/or damage. Due to that, ECM is a very attractive machining process for high strength materials such as titanium. The effect of anodic dissolution is a result of a present electric current in combination with the contact with an electrolyte. We show a material model, which enables to predict the mentioned effect by use of a chemically motivated damage of the material based on Faraday's law. After the approach's introduction, we will address its consideration within a thermo‐electrically coupled finite element method by using effective material parameters that differ between metal and electrolyte. The presentation is completed by the numerical results, which show the method's ability to simulate the ECM process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.