Long-range electron transfer rate constants for complexes of the type [(bpy)2RuIIL-Pron-apyRuIII)(NH3)5]5++ proline residues (n) varying from 0 to 9 were determined by complementary electron pulse radiolysis and flash photolysis techniques from the picosecond to the millisecond time scales. The activationless kmax values from both techniques coalesce into one data set. The distance dependence of the reactions is consistent with a smooth transition from a superexchange mechanism with attenuation constant beta = 1.4 A-1 to a hopping mechanism with attenuation constant beta = 0.17 A-1. The transition occurs between n = 3 and 4 prolines, and the virtual hopping rate constant at the shortest distance is about 1 x 106 times slower than that observed for the superexchange value.
The charge-transfer transition energies and the electronic-coupling matrix element, |H(DA)|, for electron transfer from aminopyridine (ap) to the 4-carbonyl-2,2'-bipyridine (cbpy) in cbpy-(gly)(n)-ap (gly = glycine, n = 0-6) molecules were calculated using the Zerner's INDO/S, together with the Cave and Newton methods. The oligopeptide linkages used were those of the idealized protein secondary structures, the alpha-helix, 3(10)-helix, beta-strand, and polyproline I- and II-helices. The charge-transfer transition energies are influenced by the magnitude and direction of the dipole generated by the peptide secondary structure. The electronic coupling |H(DA)| between (cbpy) and (ap) is also dependent on the nature of the secondary structure of the peptide. A plot of 2.ln|H(DA)| versus the charge-transfer distance (assumed to be the dipole moment change between the ground state and the charge-transfer states) showed that the polyproline II structure is a more efficient bridge for long-distance electron-transfer reactions (beta = 0.7 A(-1)) than the other secondary structures (beta approximately 1.3 A(-1)). Similar calculations on charged dipeptide derivatives, [CH(3)CONHCH(2)CONHCH(3)](+/)(-), showed that peptide-peptide interaction is more dependent on conformation in the cationic than in the anionic dipeptides. The alpha-helix and polyproline II-helix both have large peptide-peptide interactions (|H(DA)| > 800 cm(-1)) which arise from the angular dependence of their pi-orbitals. Such an interaction is much weaker than in the beta-strand peptides. These combined results were found to be consistent with electron-transfer rates experimentally observed across short peptide bridges in polyproline II (n = 1-3). These results can also account for directional electron transfer observed in an alpha-helical structure (different ET rates versus the direction of the molecular dipole).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.