Objectives To assess the frequency, intensity, and clinical impact of [18F]FDG-avidity of axillary lymph nodes after vaccination with COVID-19 vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) in patients referred for oncological FDG PET/CT. Methods One hundred forty patients referred for FDG PET/CT during February and March 2021 after first or second vaccination with Pfizer-BioNTech or Moderna were retrospectively included. FDG-avidity of ipsilateral axillary lymph nodes was measured and compared. Assuming no knowledge of prior vaccination, metastatic risk was analyzed by two readers and the clinical impact was evaluated. Results FDG PET/CT showed FDG-avid lymph nodes ipsilateral to the vaccine injection in 75/140 (54%) patients with a mean SUVmax of 5.1 (range 2.0 – 17.3). FDG-avid lymph nodes were more frequent in patients vaccinated with Moderna than Pfizer-BioNTech (36/50 [72%] vs. 39/90 [43%] cases, p < 0.001). Metastatic risk of unilateral FDG-avid axillary lymph nodes was rated unlikely in 52/140 (37%), potential in 15/140 (11%), and likely in 8/140 (6%) cases. Clinical management was affected in 17/140 (12%) cases. Conclusions FDG-avid axillary lymph nodes are common after COVID-19 vaccination. The avidity of lymph nodes is more frequent in Moderna compared to that in Pfizer-BioNTech vaccines. To avoid relatively frequent clinical dilemmas, we recommend carefully taking the history for prior vaccination in patients undergoing FDG PET/CT and administering the vaccine contralateral to primary cancer. Key Points • PET/CT showed FDG-avid axillary lymph nodes ipsilateral to the vaccine injection site in 54% of 140 oncological patients after COVID-19 vaccination. • FDG-avid lymphadenopathy was observed significantly more frequently in Moderna compared to patients receiving Pfizer-BioNTech-vaccines. • Patients should be screened for prior COVID-19 vaccination before undergoing PET/CT to enable individually tailored recommendations for clinical management.
Objectives: To evaluate the impact of fully automatic motion correction by data-driven respiratory gating (DDG) on positron emission tomography (PET) image quality, lesion detection and patient management. Materials and Methods: A total of 149 patients undergoing PET/CT for cancer (re-)staging were retrospectively included. Patients underwent a PET/CT on a digital detector scanner and for every patient a PET data set where DDG was enabled (PETDDG) and as well as where DDG was not enabled (PETnonDDG) was reconstructed. All PET data sets were evaluated by two readers which rated the general image quality, motion effects and organ contours. Further, both readers reviewed all scans on a case-by-case basis and evaluated the impact of PETDDG on additional apparent lesion, change of report, and change of management. Results: In 85% (n = 126) of the patients, at least one bed position was acquired using DDG, resulting in mean scan time increase of 4:37 min per patient in the whole study cohort (n = 149). General image quality was not rated differently for PETnonDDG and PETDDG images (p = 1.000) while motion effects (i.e. indicating general blurring) was rated significantly lower in PETDDG images and organ contours, including liver and spleen, were rated significantly sharper using PETDDG as compared to PETnonDDG (all p < 0.001). In 27% of patients, PETDDG resulted in a change of the report and in a total of 12 cases (8%), PETDDG resulted in a change of further clinical management. Conclusion: Deviceless DDG provided reliable fully automatic motion correction in clinical routine and increased lesion detectability and changed management in a considerable number of patients. Advances in knowledge: DDG enables PET/CT with respiratory gating to be used routinely in clinical practice without external gating equipment needed.
Background Whole‐body hybrid positron emission tomography (PET) imaging is increasingly used for sinonasal tumors. However, only empirical data exist on the additional, clinically relevant information derived from these techniques. Methods This study included 96 regionalized magnetic resonance imaging (MRI) of the sinonasal tract/neck and separate hybrid FDG‐PET/CT or FDG‐PET/MRI in 74 patients. Additional radiological information (ARI) obtained from each hybrid examination was analyzed and its clinically relevance was determined. Clinically relevant information (CRI) was categorized with regard to primary tumor site, regional lymph node metastases, distant metastases, second primary tumors, and non‐neoplastic findings. Results A total of 45/96 (46.9%) hybrid PET examinations revealed ARI. CRI was found in 32/96 (33.3%) examinations and concerned the primary tumor site (6.1%), regional lymph node metastases (4.1%), distant metastases (14.3%), second primary tumors (7.3%), and non‐neoplastic findings (5.1%). Conclusions Hybrid PET imaging yields additional radiological information translating into clinically relevant information in a substantial proportion of patients with sinonasal tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.