Although many G protein-coupled receptors (GPCRs) can form dimers, a possible role of this phenomenon in their activation remains elusive. A recent and exciting proposal is that a dynamic intersubunit interplay may contribute to GPCR activation. Here, we examined this possibility using dimeric metabotropic glutamate receptors (mGluRs). We first developed a system to perfectly control their subunit composition and show that mGluR dimers do not form larger oligomers. We then examined an mGluR dimer containing one subunit in which the extracellular agonist-binding domain was uncoupled from the G protein-activating transmembrane domain. Despite this uncoupling in one protomer, agonist stimulation resulted in symmetric activation of either transmembrane domain in the dimer with the same efficiency. This, plus other data, can only be explained by an intersubunit rearrangement as the activation mechanism. Although well established for other types of receptors such as tyrosine kinase and guanylate cyclase receptors, this is the first clear demonstration that such a mechanism may also apply to GPCRs.
Our study provides a new mechanism of TNFRSF1A regulation whereby three polymorphisms in the promoter, exon 1 and intron 4 have a functional and combined effect on exon 2 splicing, via a coupling mechanism between transcription and splicing. These polymorphisms may affect the phenotype of TRAPS and TRAPS-like patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.