Abstract. It is proven that there is a family of sets of natural numbers which has enumerations in every Turing degree except for the recursive degree. This implies that there is a countable structure which has representations in all but the recursive degree. Moreover, it is shown that there is such a structure which has a recursively represented elementary extension.
We study two chemical models for pattern formation in growing plant tips. For hemisphere radius and parameter values together optimal for spherical surface harmonic patterns of index l = 3, the Brusselator model gives an 84% probability of dichotomous branching pattern and 16% of annular pattern, while the hyperchirality model gives 88% probability of dichotomous branching and 12% of annular pattern. The models are two-morphogen reaction-diffusion systems on the surface of a hemispherical shell, with Dirichlet boundary conditions. Bifurcation analysis shows that both models give possible mechanisms for dichotomous branching of the growing tips. Symmetries of the models are used in the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.