Antiarrhythmic peptides enhance gap junction current in pairs of cardiomyocytes and coupling in cardiac tissue. To elucidate the underlying mechanisms, we investigated the effects of the antiarrhythmic peptide AAP10 (GAG-4Hyp-PY-CONH2) on pairs of adult guinea pig ventricular cardiomyocytes and pairs of HeLa cells transfected with rat cardiac connexin 43 (Cx43). By using a double-cell voltage-clamp technique in pairs of cardiomyocytes, we found that under control conditions the gap junction conductance (gj) steadily decreased with time (by -0.292 +/- 0.130 nS/min). Use of 50 nmol/L AAP10 reversed this rundown and increased gj (by +0.290 +/- 0.231 nS/min, Pa). In HeLa-Cx43 cells, AAP10 exerted the same electrophysiological effect. In these cells, AAP10 activated PKC (determined by using ELISA) in CGP54345-sensitive manner and significantly enhanced incorporation of 32P into Cx43 with dependence on PKC. If G-protein coupling was inhibited with 1 mM GDP-BS, we found the effects of AAP10 on 32P incorporation were also completely abolished. Next, we performed a radioligand binding study with 14C-AAP10 as radioligand and AAPnat as competitor. We found saturable binding of 14C-AAP10 to cardiac membrane preparations, which could be displaced with AAPnat. The Kd of AAP10 was 0.88 nmol/L. We conclude that 1) AAP10 increases gj both in adult cardiomyocytes and in transfected HeLa-Cx43 cells, 2) AAP10 exerts its effect via enhanced PKC-dependent phosphorylation of Cx43, 3) AAP10 activates PKCa, and 4) a membrane receptor exists for antiarrhythmic peptides in cardiomyocytes.
We investigated the effects of the antiarrhythmic peptide AAP10 (GAG-4Hyp-PY-CONH2, 50 nM) on pairs of adult guinea pig cardiomyocytes and on pairs of HeLa-cells transfected with rat connexin43 (Cx43). Using double cell voltage clamp technique in cardiomyocytes under control conditions, gap junction conductance (Gj) steadily decreased (by -0.3 to -0.4 nS/min). In contrast, 50 nM AAP10 significantly enhanced Gj (by +0.22 to +0.29 nS/min). This effect of AAP10 could be significantly antagonized by bisindolylmaleimide I (BIM), and by the protein kinase C (PKC) subtype-specific inhibitors HBDDE (PKCgamma and -alpha) and CGP 54345 (PKCalpha). In HeLa-Cx43 cells we found similar electrophysiological effects of AAP10. For further analysis, we incubated HeLa-Cx43 cells with [32P]orthophosphate (0.05 mCi/ml) for 4 h at 37 degrees C followed by addition of 50 nM AAP10 for 15 min. We found that incorporation of 32P into Cx43 was significantly enhanced in the presence of AAP10, which was completely inhibited in presence of BIM. PKC enzyme-linked immunosorbent assay (ELISA) revealed significant activation of PKC by AAP10 in HeLa-Cx43 cells, which could be inhibited by HBDDE and CGP 54345. Finally, a binding study using [14C]-AAP10 as radioligand was performed. We found a saturable binding of [14C]-AAP10 with a KD of 0.88 nM to cardiac membrane preparations. For assessment of the antiarrhythmic activity in anesthetized rats, we infused aconitine until the occurrence of ventricular fibrillation (VF). The aconitine dose required for initiation of VF was significantly enhanced in the presence of AAP10. In conclusion; AAP10 increases Gj in both adult cardiomyocytes and transfected HeLa-Cx43 cells. AAP10 leads to enhanced phosphorylation of Cx43 via activation of PKCalpha. A membrane receptor exists for antiarrhythmic peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.