Perovskite oxides with mixed ionic and electronic conductivities are very promising candidates for their application as energy materials related to fuel cell and metal air battery integration.
Due to its simplicity, flexibility and conformity, electroless plating presents itself as an attractive route towards functional metal nanostructures. Despite the importance for creating multimetallic materials with enhanced properties, the complex interactions between the components in electroless plating baths make alloy formations a challenging objective. In this work, we outline an electroless plating strategy fabricating Pd−Pt alloy nanomaterials, which is based on arbitrarily miscible plating baths for the individual metals. To demonstrate the excellent nanoscale conformity and homogeneity of our plating system, we apply it to ion track‐etched polymer templates with large inner surfaces as ambitious substrates, resulting in the formation of 3D free‐standing PdxPt100‐x‐nanotube‐networks (NTNWs). Based on the electro‐oxidation of methanol as a model reaction, we utilize the compositional freedom provided by our syntheses for optimizing the catalytic performance of our metal NTNWs, which heavily depends on the Pd−Pt ratio. Within our system, the highest surface normalized activity was found for the Pd20Pt80 NTNW, reaching more than a two‐fold increase of the peak current density in comparison to pure Pt. Overall, our reaction system provides a versatile toolkit for fabricating intricate Pd−Pt nanostructures of arbitrary elemental composition, and constitutes a starting point for designing new electroless alloy plating baths.
A vacancy-ordered perovskite-type compound Ba 3 Fe 3 O 8 (BaFeO 2.667 ) was prepared by oxidizing BaFeO 2.5 (P2 1 /c) with the latter compound obtained by a spray pyrolysis technique. The structure of Ba 3 Fe 3 O 8 was found to be isotypic to Ba 3 Fe 3 O 7 F (P2 1 /m) and can be written as Ba 3 Fe 3+ 2 Fe 4+ 1 O 8 . Mossbauer spectroscopy and ab initio calculations were used to confirm mixed iron oxidation states, showing allocation of the tetravalent iron species on the tetrahedral site, and octahedral as well as square pyramidal coordination for the trivalent species within a G-type antiferromagnetic ordering. The uptake and release of oxygen were investigated over a broad temperature range from room temperature to 1100 °C under pure oxygen and ambient atmosphere via a combination of DTA/TG and variable temperature diffraction measurements. The compound exhibited a strong lattice enthalpy driven reduction to monoclinic and cubic BaFeO 2.5 at elevated temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.