Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the preindustrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1-2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.
The reasons for the early Holocene temperature discrepancy between northern hemispheric model simulations and paleoclimate reconstructions—known as the Holocene temperature conundrum—remain unclear. Using hydrogen isotopes of fluid inclusion water extracted from stalagmites from the Milandre Cave in Switzerland, we established a mid-latitude European mean annual temperature reconstruction for the past 14,000 years. Our Milandre Cave fluid inclusion temperature record (MC-FIT) resembles Greenland and Mediterranean sea surface temperature trends but differs from recent reconstructions obtained from biogenic proxies and climate models. The water isotopes are further synchronized with tropical precipitation records, stressing the Northern Hemisphere signature. Our results support the existence of a European Holocene Thermal Maximum and data-model temperature discrepancies. Moreover, data-data comparison reveals a significant latitudinal temperature gradient within Europe. Last, the MC-FIT record suggests that seasonal biases in the proxies are not the primary cause of the Holocene temperature conundrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.