Abstract& Key message We demonstrate that, beyond leaf phenology, the phenological cycles of wood and fine roots present clear responses to environmental drivers in temperate and boreal trees. These drivers should be included in terrestrial ecosystem models. & Context In temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits, and reserve compounds. & Aims Here, we review both the role of environmental drivers in determining the phenology of tree organs and the models used to predict the phenology of tree organs in temperate and boreal forest trees. & Results Temperature is a key driver of the resumption of tree activity in spring, although its specific effects vary among organs. There is no such clear dominant environmental cue involved in the cessation of tree activity in autumn and in the onset of dormancy, but temperature, photoperiod, and water stress appear as prominent factors. The phenology of a given organ is, to a certain extent, influenced by processes in distant organs. & Conclusion Inferring past trends and predicting future trends of tree phenology in a changing climate requires specific phenological models developed for each organ to consider the phenological cycle as an ensemble in which the environmental cues that trigger each phase are also indirectly involved in the subsequent phases. Incorporating such models into terrestrial ecosystem models (TEMs) would likely improve the accuracy of their predictions. The extent to which the coordination of the phenologies of tree organs will be affected in a changing climate deserves further research.
Abstract. Soil CO 2 efflux is the main source of CO 2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objective of our study was to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13 CO 2 pulse labelling of the entire crown of three different tree species (beech, oak and pine) was carried out at distinct phenological stages. Excess 13 C in soil CO 2 efflux was tracked using tuneable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13 C in soil CO 2 efflux and the amount of 13 C allocated to soil CO 2 efflux. Isotope composition (δ 13 C) of CO 2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ 13 C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6-2.7 days during the active growing season, more than 4 days during the resting season), and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13 C allocated to soil CO 2 efflux was estimated from a compartmentCorrespondence to: D. Epron (daniel.epron@scbiol.uhp-nancy.fr) model. It varied between 1 and 21 % of the amount of 13 CO 2 taken up by the crown, depending on the species and the season. While rainfall exclusion that moderately decreased soil water content did not affect the pattern of carbon allocation to soil CO 2 efflux in beech, seasonal patterns of carbon allocation belowground differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with the strength of other sinks (aboveground growth in late spring and storage in late summer) that were not observed in oak. We report a fast transfer of recent photosynthates to the mycorhizosphere and we conclude that the patterns of carbon allocation belowground are species specific and change seasonally according to the phenology of the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.