Using micro-Raman spectroscopy and scanning tunneling microscopy, we study the relationship between structural distortion and electrical hole doping of graphene on a silicon dioxide substrate. The observed upshift of the Raman G band represents charge doping and not compressive strain. Two independent factors control the doping: (1) the degree of graphene coupling to the substrate and (2) exposure to oxygen and moisture. Thermal annealing induces a pronounced structural distortion due to close coupling to SiO2 and activates the ability of diatomic oxygen to accept charge from graphene. Gas flow experiments show that dry oxygen reversibly dopes graphene; doping becomes stronger and more irreversible in the presence of moisture and over long periods of time. We propose that oxygen molecular anions are stabilized by water solvation and electrostatic binding to the silicon dioxide surface.
The properties of pristine, free-standing graphene monolayers prepared by mechanical exfoliation of graphite are investigated. The graphene monolayers, suspended over open trenches, are examined by means of spatially resolved Raman spectroscopy of the G-, D-, and 2D-phonon modes. The G-mode phonons exhibit reduced energies (1580 cm -1 ) and increased widths (14 cm -1 ) compared to the response of graphene monolayers supported on the SiO 2 -covered substrate. From analysis of the G-mode Raman spectra, we deduce that the free-standing graphene monolayers are essentially undoped, with an upper bound of 2×10 11 cm -2 for the residual carrier concentration. On the supported regions, significantly higher and spatially inhomogeneous doping is observed. The free-standing graphene monolayers show little local disorder, based on the very weak Raman D-mode response. The two-phonon 2D mode of the free-standing graphene monolayers is downshifted in frequency compared to that of the supported region of the samples and exhibits a narrowed, positively skewed line shape.
We introduce a new, highly sensitive, and simple heterodyne optical method for imaging individual nonfluorescent nanoclusters and nanocrystals. A 2 order of magnitude improvement of the signal is achieved compared to previous methods. This allows for the unprecedented detection of individual small absorptive objects such as metallic clusters (of 67 atoms) or nonluminescent semiconductor nanocrystals. The measured signals are in agreement with a calculation based on the scattering field theory from a photothermal-induced modulated index of refraction profile around the nanoparticle.
The photothermal heterodyne imaging method is used to study for the first time the absorption spectra of individual gold nanoparticles with diameters down to 5 nm. Intrinsic size effects that result in a broadening of the surface plasmon resonance are unambiguously observed. Dispersions in the peak energies and homogeneous widths of the single-particle resonances are revealed. The experimental results are analyzed within the frame of Mie theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.