Transfer of somatic cell nuclei to enucleated eggs and ectopic expression of specific transcription factors are two different reprogramming strategies used to generate pluripotent cells from differentiated cells. However, these methods are poorly efficient, and other unknown factors might be required to increase their success rate. Here we show that Xenopus egg extracts at the metaphase stage (M phase) have a strong reprogramming activity on mouse embryonic fibroblasts (MEFs). First, they reset replication properties of MEF nuclei toward a replication profile characteristic of early development, and they erase several epigenetic marks, such as trimethylation of H3K9, H3K4, and H4K20. Second, when MEFs are reversibly permeabilized in the presence of M-phase Xenopus egg extracts, they show a transient increase in cell proliferation, form colonies, and start to express specific pluripotency markers. Finally, transient exposure of MEF nuclei to M-phase Xenopus egg extracts increases the success of nuclear transfer to enucleated mouse oocytes and strongly synergizes with the production of pluripotent stem cells by ectopic expression of transcription factors. The mitotic stage of the egg extract is crucial, because none of these effects is detected when using interphasic Xenopus egg extracts. Our data demonstrate that mitosis is essential to make mammalian somatic nuclei prone to reprogramming and that, surprisingly, the heterologous Xenopus system has features that are conserved enough to remodel mammalian nuclei. Murine induced pluripotent stem (iPS) cells have a complete developmental potential as demonstrated by their capacity to form teratomas, generate chimeras, and contribute to the germline. However, the efficiency of both iPS cell production and NT remains low, and most of the reprogrammed cells appear to be reprogrammed only partially. The epigenetic memory of the cell is one key barrier that must be overcome to reprogram differentiated cells (5), and additional factors may be needed to improve reprogramming efficiency (6, 7). Several attempts have been made to reprogram somatic cells by using cellular extracts, but they failed to reproduce the range of effects obtained by NT.In NT experiments, reprogramming is induced by exposure of transplanted nuclei to the cytoplasm of the receiving oocyte. However, NT reprogramming appears hard to study in vitro because of the difficulty of obtaining large quantities of mammalian oocytes. Xenopus eggs, which can be obtained in large amounts, can remodel the nuclear lamina of mammalian cells (8), and Xenopus egg extracts can up-regulate Oct4 expression in cells that already express Oct4 (9), similar to what is observed when adult mouse nuclei are injected in Xenopus oocytes (10). The replication origin pattern and chromosome organization of Xenopus erythrocyte nuclei also could be remodeled by metaphase-arrested extracts (M-phase extracts) from Xenopus eggs (11). We show here that such extracts increase the efficiency of NT and iPS cell production from mouse embryonic fi...
Meiotic maturation, the final step of oogenesis, is a crucial stage of development in which an immature oocyte becomes a fertilizable egg. In Xenopus, the ability to replicate DNA is acquired during maturation at breakdown of the nuclear envelope by translation of a DNA synthesis inducer that is not present in the oocyte. Here we identify Cdc6, which is essential for recruiting the minichromosome maintenance (MCM) helicase to the pre-replication complex, as this inducer of DNA synthesis. We show that maternal cdc6 mRNA but not protein is stored in the oocyte. Cdc6 protein is synthesized during maturation, but this process can be blocked by degrading the maternal cdc6 mRNA by oligonucleotide antisense injections or by translation inhibition. Rescue experiments using recombinant Cdc6 protein show that Cdc6 is the only missing replication factor whose translation is necessary and sufficient to confer DNA replication competence to the egg before fertilization. The licence to replicate is given by Cdc6 at the end of meiosis I, but the cytostatic factor (CSF) pathway, which maintains large amounts of active Cdc2/Cyclin B2, prevents the entry into S phase until fertilization.
DNA replication initiation is a two-step process. During the G1-phase of the cell cycle, the ORC complex, CDC6, CDT1, and MCM2–7 assemble at replication origins, forming pre-replicative complexes (pre-RCs). In S-phase, kinase activities allow fork establishment through (CDC45/MCM2–7/GINS) CMG-complex formation. However, only a subset of all potential origins becomes activated, through a poorly understood selection mechanism. Here we analyse the pre-RC proteomic interactome in human cells and find C13ORF7/RNF219 (hereafter called OBI1, for ORC-ubiquitin-ligase-1) associated with the ORC complex. OBI1 silencing result in defective origin firing, as shown by reduced CMG formation, without affecting pre-RC establishment. OBI1 catalyses the multi-mono-ubiquitylation of a subset of chromatin-bound ORC3 and ORC5 during S-phase. Importantly, expression of non-ubiquitylable ORC3/5 mutants impairs origin firing, demonstrating their relevance as OBI1 substrates for origin firing. Our results identify a ubiquitin signalling pathway involved in origin activation and provide a candidate protein for selecting the origins to be fired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.