Biomass from dedicated crops is expected to contribute significantly to the replacement of fossil resources. However, sustainable bioenergy cropping systems must provide high biomass production and low environmental impacts. This study aimed at quantifying biomass production, nutrient removal, expected ethanol production, and greenhouse gas (GHG) balance of six bioenergy crops: Miscanthus 9 giganteus, switchgrass, fescue, alfalfa, triticale, and fiber sorghum. Biomass production and N, P, K balances (input-output) were measured during 4 years in a long-term experiment, which included two nitrogen fertilization treatments. These results were used to calculate a posteriori 'optimized' fertilization practices, which would ensure a sustainable production with a nil balance of nutrients. A modified version of the cost/benefit approach proposed by Crutzen et al. (2008), comparing the GHG emissions resulting from N-P-K fertilization of bioenergy crops and the GHG emissions saved by replacing fossil fuel, was applied to these 'optimized' situations. Biomass production varied among crops between 10.0 (fescue) and 26.9 t DM ha À1 yr À1 (miscanthus harvested early) and the expected ethanol production between 1.3 (alfalfa) and 6.1 t ha À1 yr À1 (miscanthus harvested early). The cost/benefit ratio ranged from 0.10 (miscanthus harvested late) to 0.71 (fescue); it was closely correlated with the N/C ratio of the harvested biomass, except for alfalfa. The amount of saved CO 2 emissions varied from 1.0 (fescue) to 8.6 t CO 2 eq ha À1 yr
À1(miscanthus harvested early or late). Due to its high biomass production, miscanthus was able to combine a high production of ethanol and a large saving of CO 2 emissions. Miscanthus and switchgrass harvested late gave the best compromise between low N-P-K requirements, high GHG saving per unit of biomass, and high productivity per hectare.
Energy crops are currently promoted as potential sources of alternative energy that can help mitigate the climate change caused by greenhouse gases (GHGs). The perennial crop Miscanthus 9 giganteus is considered promising due to its high potential for biomass production under conditions of low input. However, to assess its potential for GHG mitigation, a better quantification of the crop's contribution to soil organic matter recycling under various management systems is needed. The aim of this work was to study the effect of abscised leaves on carbon (C) and nitrogen (N) recycling in a Miscanthus plantation. The dynamics of senescent leaf fall, the rate of leaf decomposition (using a litter bag approach) and the leaf accumulation at the soil surface were tracked over two 1-year periods under field conditions in Northern France. The fallen leaves represented an average yearly input of 1.40 Mg C ha À1 and 16 kg N ha À1 . The abscised leaves lost approximately 54% of their initial mass in 1 year due to decomposition; the remaining mass, accumulated as a mulch layer at the soil surface, was equivalent to 7 Mg dry matter (DM) ha À1 5 years after planting. Based on the estimated annual leaf-C recycling rate and a stabilization rate of 35% of the added C, the annual contribution of the senescent leaves to the soil C was estimated to be approximately 0.50 Mg C ha À1 yr À1 or 10 Mg C ha À1 total over the 20-year lifespan of a Miscanthus crop.This finding suggested that for Miscanthus, the abscised leaves contribute more to the soil C accumulation than do the rhizomes or roots. In contrast, the recycling of the leaf N to the soil was less than for the other N fluxes, particularly for those involving the transfer of N from the tops of the plant to the rhizome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.