[1] In this paper, a hydrologic/hydrodynamic modeling of the Amazon River basin is presented using the MGB-IPH model with a validation using remotely sensed observations. Moreover, the sources of model errors by means of the validation and sensitivity tests are investigated, and the physical functioning of the Amazon basin is also explored. The MGB-IPH is a physically based model resolving all land hydrological processes and here using a full 1-D river hydrodynamic module with a simple floodplain storage model. Riverfloodplain geometry parameters were extracted from the SRTM digital elevation model, and the model was forced using satellite-derived rainfall from TRMM3B42. Model results agree with observed in situ daily river discharges and water levels and with three complementary satellite-based products: (1) water levels derived from ENVISAT altimetry data; (2) a global data set of monthly inundation extent; and (3) monthly terrestrial water storage (TWS) anomalies derived from the Gravity Recovery and Climate Experimental mission. However, the model is sensitive to precipitation forcing and river-floodplain parameters. Most of the errors occur in westerly regions, possibly due to the poor quality of TRMM 3B42 rainfall data set in these mountainous and/or poorly monitored areas. In addition, uncertainty in river-floodplain geometry causes errors in simulated water levels and inundation extent, suggesting the need for improvement of parameter estimation methods. Finally, analyses of Amazon hydrological processes demonstrate that surface waters govern most of the Amazon TWS changes (56%), followed by soil water (27%) and ground water (8%). Moreover, floodplains play a major role in stream flow routing, although backwater effects are also important to delay and attenuate flood waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.