Conjugated polymers have been widely studied as flexible, versatile semiconductors in organic electronics. However, the material stability is one of the problems limiting their applications. Thus, understanding the degradation process of conjugated polymers is crucial. In this work, we monitored the chain scission of the model polymer MEH-PPV in chloroform solutions under different conditions by assessing its molecular weight using gel permeation chromatography and optical spectral measurements. We showed that changes in the UV-VIS spectrum can be seen only when the degradation has already progressed substantially. The fluorescence spectrum was found to be almost totally insensitive to the degradation stage of the polymers. We demonstrate that chain scission in solutions happens even in the dark leading to a 15% decrease of the molecular weight after just one day of storage. If exposed to room light, the chain length decreases by about 10 times over one day of exposure. Using stronger light intensity or enriching the solution with oxygen accelerates the degradation process dramatically. The rate of the reaction follows approximately a square root dependence with light intensity and oxygen concentration. We conclude that some extent of polymer degradation is difficult to avoid in common laboratory practices since to prevent it, one needs to work in an oxygen-free atmosphere in the dark. Preparation of polymer films from partially degraded solutions might lead not only to losing the connection between the molecular weight and the opto-electronic properties but also to unintentional doping of the semiconductor by products of chain scission reactions.
The structural and physical properties of the β polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of β-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at T N = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a′ magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6.
Single phases of the α, β, and γ polymorphs of the Fe2WO6 iron tungsten oxide were obtained through an aqueous solution route based on the combustion and heat treatment of a spray-dried precursor powder. Syntheses with Fe/W ratios ≠ 2 identified a domain of solid solutions consistent with a Fe2–2x W1+x □ x O6 scenario (x up to ∼0.025) for the defect chemistry in the temperature range around 850 °C. The crystallographic characterizations revealed a random cationic distribution in an α-PbO2-type cell for the low-temperature polymorph (α) and pointed to a reconstructive mechanism for the formation of polymorph β. A comparison of diffuse reflectance spectra confirmed the visual observation of minor color differences between the polymorphs by revealing small shifts of the absorption threshold; the Kubelka–Munk function and Tauc plots were used for comparison of the polymorphs and discussion of the results with respect to relevant literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.