Typical absence has long been considered as the prototypic form of generalized nonconvulsive epileptic seizures. Recent investigations in patients and animal models suggest that absence seizures could originate from restricted regions of the cerebral cortex. However, the cellular and local network processes of seizure initiation remain unknown. Here, we show that absence seizures in Genetic Absence Epilepsy Rats from Strasbourg, a well established genetic model of this disease, arise from the facial somatosensory cortex. Using in vivo intracellular recordings, we found that epileptic discharges are initiated in layer 5/6 neurons of this cortical region. These neurons, which show a distinctive hyperactivity associated with a membrane depolarization, lead the firing of distant cortical cells during the epileptic discharge. Consistent with their ictogenic properties, neurons from this "focus" exhibit interictal and preictal oscillations that are converted into epileptic pattern. These results confirm and extend the "focal hypothesis" of absence epilepsy and provide a cellular scenario for the initiation and generalization of absence seizures.
Discharge activities and local field potentials were recorded in the orofacial motor cortex and in the corresponding rostrolateral striatum of urethane-anesthetized rats. Striatal projection neurons were identified by antidromic activation and fast-spiking GABAergic interneurons (FSIs) by their unique characteristics: briefer spike and burst responses. Juxtacellular injection of neurobiotin combined with parvalbumin immunohistochemistry validated this identification. Spontaneous activities and spike responses to cortical stimulation were recorded during both states of cortical activity: slow waves and desynchronization. Both FSI and projection neurons spontaneously discharged synchronously with slow waves at the maximum of cortical activity, but, on average, FSIs were much more active. Cortical desynchronization enhanced FSI activity and facilitated their spike responses to cortical stimulation, whereas opposite effects were observed regarding projection neurons. Experimental conditions favoring FSI discharge were always associated with a decrease in the firing activity of projection neurons. Spike responses to cortical stimulation occurred earlier (latency difference, 4.6 ms) and with a lower stimulation current for FSIs than for projection neurons. Moreover, blocking GABA A receptors by local picrotoxin injection enhanced the spike response of projection neurons, and this increase was larger in experimental conditions favoring FSI responses. Therefore, on average, FSIs exert in vivo a powerful feedforward inhibition on projection neurons. However, a few projection neurons were actually more sensitive to cortical stimulation than FSIs. Moreover, picrotoxin, which revealed FSI inhibition, preferentially affected projection neurons exhibiting the weakest sensitivity to cortical stimulation. Thus, feedforward inhibition by FSIs filters cortical information effectively transmitted by striatal projection neurons.
1. In vivo extracellular and intracellular recordings were performed from thalamocortical (TC) neurones in a genetic model of absence epilepsy (genetic absence epilepsy rats from Strasbourg) during spontaneous spike and wave discharges (SWDs). 2. Extracellularly recorded single units (n = 14) fired either a single action potential or a high frequency burst of up to three action potentials, concomitantly with the spike component of the spike-wave complex. 3. Three main events characterized the intracellular activity of twenty-six out of twenty-eight TC neurones during SWDs: a small amplitude tonic hyperpolarization that was present throughout the SWD, rhythmic sequences of EPSP/IPSPs occurring concomitantly with the spike-wave complexes, and a small tonic depolarization at the end of the SWD. The rhythmic IPSPs, but not the tonic hyperpolarization, were mediated by activation of GABAA receptors since they reversed in polarity at -68 mV and appeared as depolarizing events when recording with KCl-filled electrodes. 4. The intracellular activity of the remaining two TC neurones consisted of rhythmic low threshold Ca2+ potentials, with a few EPSP/IPSP sequences present at the start of the SWD. 5. These results obtained in a well-established genetic model of absence epilepsy do not support the hypothesis that the intracellular activity of TC neurones during SWDs involves rhythmic sequences of GABAB IPSPs and low threshold Ca2+ potentials.
The functions of the basal ganglia are achieved through excitation of striatal output neurons (SONs) by converging cortical glutamergic afferents. We assessed the relationship between different patterns of activity in cortico-striatal (C-S) cells and the electrical behavior of SONs in vivo. Intracellular activities of rat C-S neurons in the orofacial motor cortex and of SONs, located in the projection field of this cortical region, were recorded under different anesthetics, which generate various temporal patterns of cortical activity. A surface electroencephalogram (EEG) of the orofacial motor cortex was simultaneously performed with intracellular recordings and EEG waves were used as correlates of a coherent synaptic activity in cortical neurons. Under barbiturate anesthesia C-S neurons showed rhythmic (5--7 Hz) supra-threshold depolarizations in phase with large amplitude EEG waves. The correlative activity of SONs was characterized by large amplitude oscillation-like synaptic depolarizations that could trigger action potentials. Under ketamine-xylazine anesthesia C-S neurons exhibited a step-like behavior consisting of depolarizing plateaus (up states), leading to multiple spike discharges, interrupted by hyperpolarizing periods (down states). The related activity of SONs was step-like membrane potential fluctuations with firing confined to the early part of the striatal up state. In C-S neurons and SONs up states coincided with slow recurrent EEG waves (approximately 1 Hz). Finally, under neurolept-analgesia an apparently disorganized EEG activity was associated with a lack of rhythmic discharge in C-S neurons. This uncorrelated activity in C-S neurons resulted in an absence of spontaneous firing as well as of large amplitude synaptic depolarizations in SONs. In the present study we demonstrate that SONs shape their input-output relationship by filtering out uncorrelated synaptic activity and that a minimal synchronization in the cortico-striatal afferents is required to produce significant synaptic depolarization in SONs.
Striatal medium-sized spiny neurons (MSNs) integrate and convey information from the cerebral cortex to the output nuclei of the basal ganglia. Intracellular recordings from anesthetized animals show that MSNs undergo spontaneous transitions between hyperpolarized and depolarized states. State transitions, regarded as necessary for eliciting action potential firing in MSNs, are thought to control basal ganglia function by shaping striatal output. Here, we use an anesthetic-free rat preparation to show that the intracellular activity of MSNs is not stereotyped and depends critically on vigilance state. During slow-wave sleep, much as during anesthesia, MSNs displayed rhythmic step-like membrane potential shifts, correlated with cortical field potentials. However, wakefulness was associated with a completely different pattern of temporally disorganized depolarizing synaptic events of variable amplitude. Transitions from slow-wave sleep to wakefulness converted striatal discharge from a cyclic brisk firing to an irregular pattern of action potentials. These findings illuminate different capabilities of information processing in basal ganglia networks, suggesting in particular that a novel style of striatal computation is associated with the waking state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.