Vibration levels that onboard equipment must be able to withstand throughout their lives for correct operation are mainly determined experimentally because predicting the dynamic behavior of a complete aircraft requires computational means and methods that are currently difficult to implement. We present a data-driven methodology that leverages flight-test accelerometer data to produce a predictive model. This model, based on an ensemble of artificial neural networks, performs a multioutput multivariate regression to estimate vibration spectra from a set of aircraft general parameters without having to characterize excitation sources. The model is compared with baseline models over two protocols, which are 1) standard training and testing as well as 2) extrapolation to high dynamic pressures, in order to assess physical consistency. Although the first protocol shows that all models can produce results accurate enough for this context, the second protocol shows that only the ensemble model is able to correctly extrapolate the energy. Using the Shapley additive explanations method, also known as SHAP, we show that these results can be explained by the ability of our model to identify the dynamic pressure as the core feature used in the extrapolation protocol. The proposed model can be used in multiple applications, such as anomaly detection and vibration flight envelope opening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.