We have experimentally studied the fluorescence resonance energy transfer (FRET) between green fluorescent protein (GFP) molecules by inserting folded or intrinsically unstructured proteins between CyPet and Ypet. We discovered that most of the enhanced FRET signal previously reported for this pair was due to enhanced dimerization, so we engineered a monomerizing mutation into each. An insert containing a single fibronectin type III domain (3.7 nm end-to-end) gave a moderate FRET signal while a two-domain insert (7.0 nm) gave no FRET. We then tested unstructured proteins of various lengths, including the charged-plus-PQ domain of ZipA, the tail domain of a-adducin, and the C-terminal tail domain of FtsZ. The structures of these FRET constructs were also studied by electron microscopy and sedimentation. A 12 amino acid linker and the N-terminal 33 amino acids of the charged domain of the ZipA gave strong FRET signals. The C-terminal 33 amino acids of the PQ domain of the ZipA and several unstructured proteins with 66-68 amino acids gave moderate FRET signals. The 150 amino acid charged-plus-PQ construct gave a barely detectable FRET signal. FRET efficiency was calculated from the decreased donor emission to estimate the distance between donor and acceptor. The donor-acceptor distance varied for unstructured inserts of the same length, suggesting that they had variable stiffness (persistence length). We conclude that GFP-based FRET can be useful for studying intrinsically unstructured proteins, and we present a range of calibrated protein inserts to experimentally determine the distances that can be studied.
In order to understand the sensitivity of alveolar macrophages (AMs) to substrate properties, we have developed a new model of macrophages cultured on substrates of increasing Young's modulus: (i) a monolayer of alveolar epithelial cells representing the supple (approximately 0.1 kPa) physiological substrate, (ii) polyacrylamide gels with two concentrations of bis-acrylamide representing low and high intermediate stiffness (respectively 40 kPa and 160 kPa) and, (iii) a highly rigid surface of plastic or glass (respectively 3 MPa and 70 MPa), the two latter being or not functionalized with type I-collagen. The macrophage response was studied through their shape (characterized by 3D-reconstructions of F-actin structure) and their cytoskeletal stiffness (estimated by transient twisting of magnetic RGD-coated beads and corrected for actual bead immersion). Macrophage shape dramatically changed from rounded to flattened as substrate stiffness increased from soft ((i) and (ii)) to rigid (iii) substrates, indicating a net sensitivity of alveolar macrophages to substrate stiffness but without generating F-actin stress fibers. Macrophage stiffness was also increased by large substrate stiffness increase but this increase was not due to an increase in internal tension assessed by the negligible effect of a F-actin depolymerizing drug (cytochalasine D) on bead twisting. The mechanical sensitivity of AMs could be partly explained by an idealized numerical model describing how low cell height enhances the substrate-stiffness-dependence of the apparent (measured) AM stiffness. Altogether, these results suggest that macrophages are able to probe their physical environment but the mechanosensitive mechanism behind appears quite different from tissue cells, since it occurs at no significant cell-scale prestress, shape changes through minimal actin remodeling and finally an AMs stiffness not affected by the loss in F-actin integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.