A model is derived for the coupling of transient free surface and pressurized flows. The resulting system of equations is written under a conservative form with discontinuous gradient of pressure. We treat the transition point between the two types of flows as a free boundary associated to a discontinuity of the gradient of pressure. The numerical simulation is performed by making use of a Roe-like finite volume scheme that we adapted to such discontinuities in the flux. The validation is performed by comparison with experimental results.
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions related to the Kelvin-Voigt damping and a delay term acting on the boundary. If the weight of the delay term in the feedback is less than the weight of the term without delay or if it is greater under an assumption between the damping factor, and the difference of the two weights, we prove the global existence of the solutions. Under the same assumptions, the exponential stability of the system is proved using an appropriate Lyapunov functional. More precisely, we show that even when the weight of the delay is greater than the weight of the damping in the boundary conditions, the strong damping term still provides exponential stability for the system.
We present the formal derivation of a new unidirectional model for unsteady
mixed flows in non uniform closed water pipe. In the case of free surface
incompressible flows, the \FS-model is formally obtained, using formal
asymptotic analysis, which is an extension to more classical shallow water
models. In the same way, when the pipe is full, we propose the \Pres-model,
which describes the evolution of a compressible inviscid flow, close to gas
dynamics equations in a nozzle. In order to cope the transition between a free
surface state and a pressured (i.e. compressible) state, we propose a mixed
model, the \PFS-model, taking into account changes of section and slope
variation
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the Kelvin-Voigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.