We demonstrate the optical manipulation of cells and dielectric particles on the surface of silicon nitride waveguides. Glass particles with 2microm diameter are propelled at velocities of 15microm/s with a guided power of 20mW. This is approximately 20 times more efficient than previously reported, and permits to use this device on low refractive index objects such as cells. Red blood cells and yeast cells can be trapped on the waveguide and pushed along it by the action of optical forces. This kind of system can easily be combined with various integrated optical structures and opens the way to the development of new microsystems for cell sorting applications.
We have observed the motion of metallic particles above various optical waveguides injected by 1064nm radiation. Small gold particles (250nm diameter) are attracted towards the waveguide where the intensity of the optical field is maximum, and are propelled at high velocity (up to 350mum/s) along the waveguide due to radiation pressure. The behaviour of larger metallic particles (diameter >600nm) depends on the polarization of the evanescent field: for TM polarization they are attracted above the waveguide and propelled by the radiation pressure; for TE polarization they are expelled on the side of the waveguide and propelled at much smaller velocity. This is consistent with calculations of radiative forces on metallic particles by Nieto-Vesperinas et al. 3D-finite element method calculations carried out for our experimental situations confirm the observed dependence with the polarization of the field and the size of the particles. These observations open the way to the development of new microsystems for particles manipulations and sorting applications.
We investigate the behavior of silicon and ZnO nanowires in the evanescent field on the surface of a silicon nitride waveguide. The nanowires in aqueous solution are attracted to the waveguide by the gradient force and then propelled along the waveguide by the radiation pressure. Observed experimental velocities are higher for silicon nanowires than for ZnO nanowires, with relatively large variations for both kinds of nanowires. Simulations with the finite element method show that the forces on the nanowires are very dependent on their geometrical parameters and refractive index, which explains the observed variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.