Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
The high-affinity QH ubiquinone-binding site in the bo(3) ubiquinol oxidase from Escherichia coli has been characterized by an investigation of the native ubiquinone radical anion QH(*-) by pulsed electron paramagnetic resonance (EPR) spectroscopy. One- and two-dimensional electron spin-echo envelope modulation (ESEEM) spectra reveal strong interactions of the unpaired electron of QH(*-) with a nitrogen nucleus from the surrounding protein matrix. From analysis of the experimental data, the (14)N nuclear quadrupolar parameters have been determined: kappa = e(2)qQ/4h = 0.93 MHz and eta = 0.50. This assignment is confirmed by hyperfine sublevel correlation (HYSCORE) spectroscopy. On the basis of a comparison of these data with those obtained previously for other membrane-protein bound semiquinone radicals and model systems, this nucleus is assigned to a protein backbone nitrogen. This result is discussed with regard to the location and potential function of QH in the enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.